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The paper focuses on the simulation, analysis and control 

of the energy flow in a parallel hybrid electric vehicle (HEV). 
HEVs operation is concerned with the on board conversion of 
chemical, electric and mechanic energy and its optimal control 
is essential in order to increase the global system efficiency. 

A dynamic model is used to describe the driver-vehicle 
interaction for a generic transient and to simulate the vehicle 
driveline, the internal combustion engine (ICE) and the electric 
motor/generator (EM). A Genetic Algorithm has been 
implemented to design the rules of a fuzzy logic controller for 
the optimal management of the energy flow between EM and 
ICE, accounting for the battery state of charge (SOC) and the 
route typology (urban o extra-urban cycle).  

The methodology has been applied for a standard driving 
ECE-EUDC cycle with a significant improvement of the fuel 
efficiency.  
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�� Battery package. 
�� Electromagnetic clutch. 
�� Gaussian peak of the membership functions. 
��� [g/kWh] Specific fuel consumption. 
�� Differential gear. 
��� Driver behavior model. 
��� Driver Interpreter.  
��� Driveline. 
��	� Engine control unit. 
�
� Electric machine (Motor/Generator). 
��� Gear box. 
���� Internal combustion engine. 
�� Number of membership functions. 

����� Pedal actuator. 

��� [W] Electric power. 

���� Battery state of charge. 
��� Throttle controller. 
���� [Nm] Torque delivered by the Electric Machine. 
����� [Nm] Torque delivered by the ICE. 
���	
��� [Nm] Torque demanded to the EM. 
����� [Nm] Resistant torque. 
��� Torque splitter. 
�

� [kg m2] Momentum of inertia. 
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ω� [rad/s] Angular speed. 
η� Efficiency of the electric machine. 
σ� Standard deviation of the membership functs. 
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In the last years the increasing interest for energetic and 

environmental problems has given a strong impulse toward the 
development of alternative propulsion systems for automotive 
applications. The hybrid electric vehicles (HEVs) seem to be a 
good and feasible solution from energetic-environing as well as 
industrial point of view. They are equipped with an electrical 
traction system, composed of a set of batteries and an electric 
motor/generator (EM) which is coupled with a standard internal 
combustion engine (ICE). Thus, HEVs present all the 
advantages of the electric traction (e.g. limited pollution and 
acoustic impact, significant energy saving, and improved 
drivability) together with the typical features of ICE such as 
high autonomy (Riley, 1994; Hochgraf et al. 1996; Powell et 
al., 1998; Nagasaka et al., 1998; Baumann et al., 1998; 
Guzzella and Amstutz, 1999).  

Depending on the powertrain layout, two different HEVs 
configurations can be considered: series hybrid vehicles and 
parallel hybrid vehicles. In the series HEV, the ICE powers an 
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electric generator for recharging the battery pack and the 
vehicle is powered by an electric motor. The ICE is sized for a 
mean load power and works at constant load with reduced 
pollutant emissions, high reliability and long working life. On 
the other hand, in this configuration the energy flows through a 
series of devices (ICE, generator, battery pack, electric motor, 
driveline) each with its own efficiency, resulting in a significant 
reduction of the powertrain global efficiency (Baumann et al., 
1998) 

In the parallel architecture, both ICE and EM are 
mechanically coupled to the transmission and can 
simultaneously power the vehicle. This configuration offers a 
major flexibility to different working conditions (i.e. driving 
cycle).  

The dynamic model designed for simulating the on-board 
energy flow (i.e. mechanical, chemical, electrical) during 
arbitrary driving cycles, accounts for the following working 
modes: 
[1] Electric mode: the vehicle is powered by the EM while the 

ICE is switched off. This mode is suitable for driving in 
urban areas where a great reduction of pollutant emissions 
is imposed. 

[2] Hybrid mode: the EM works as motor and assists the ICE 
in powering the vehicle.  

[3] Recharging mode: the ICE powers the EM which works as 
electric generator to charge the battery pack. 

[4] Regenerative braking: during vehicle deceleration the EM 
works as a generator to charge the battery pack, thus 
converting the vehicle kinetic energy into electrical energy. 

In the model, the above modes are selected as function of 
mission profile, urban or extra-urban route, battery state of 
charge (SOC) and engine / motor characteristics. 

In the following the powertrain model and the energy 
control strategies are described together with the methodologies 
implemented for the control strategies optimization. In the 
results section, the simulation and optimization results, referred 
to the standard ECE-EUDC driving cycle are presented and 
discussed.  
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The powertrain of the parallel hybrid vehicle considered 

for the present study is sketched in Figure 1: the powertrain has 
a spark-ignition IC engine (4 cylinders with 16 valves and a 
displacement of 1242 cm3) and an electric asynchronous three-
phase motor/generator (30 kW); a lead-acid battery package is 
used for the electric energy storage. A cogged belt connects the 
thermal engine and the electric motor and an electromagnetic 
clutch decouples the engine from the drivetrain (Arsie et al. 
1999). In order to focus the attention on the energy flow 
control strategy and to reduce the computational effort, the 
driveline has been simulated as a rigid body neglecting 
torsional elasticity and clutch dynamics (Arsie et al., 2000). 
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In order to simulate the hybrid vehicle during a generic 

driving mission, the developed model describes the main 
powertrain components and simulates the driver behaviour in 
following the velocity target. A block diagram of the complete 
system is sketched in Figure 2 where all the main physical sub-
models, the control tasks and the mechanical torque paths are 
shown. The Driver Behaviour (DB) model is based on the 
fuzzy logic and provides the actual gas pedal position in 
following the target velocity profile of the vehicle. 

The pedal position and its derivative are used as input for 
the Driver Interpreter block (DI), which estimates the torque 
demand (traction or braking torque) to meet the driver 
intention. On a spark ignition engine, this system is known as 
torque based control and is implemented for drive-by-wire 
systems where the mechanical linkage between the gas pedal 
and the throttle valve is removed. The Driver Interpreter output 
is split into a torque demand for the ICE and the EM by the 
Torque Splitter controller (TS). This control action depends on 
the working modes (i.e. electric, hybrid, recharging and 
regenerative braking) as well as on the battery state of charge, 
the route condition (i.e. urban, extra-urban) and the residual 
mission profile. 

According to the drive-by-wire system strategy, a throttle 
controller is implemented (TC) to provide the effective throttle 
opening position as function of the ICE torque demand, which 
is evaluated by the Torque Splitter. The throttle opening is 
assumed as input for the ICE model to simulate the engine 
behavior and to estimate the effective engine torque, the pre-
catalyst emissions and the fuel consumption. For the current 
application, the throttle controller is a two-dimensional look-up 
table, derived from engine experimental data, where the throttle 
opening is estimated as function of the engine torque demand 
and the engine speed. 

The effective torque delivered by the electric machine 
(EM) is estimated from the electric torque demand computed 
by the Torque Splitter, accounting for the EM efficiency stored 
into a look-up table.  
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The torque provided by both the EM and the ICE is used 
as input for the driveline model (DL) to compute the actual 
rotational speed of EM and ICE and the vehicle speed. For the 
DL model, a rigid body from the crankshaft to the tires is 
assumed and the effects of aerodynamic losses and rolling 
friction are considered.  

During the battery recharging the mechanical torque to the 
generator is supplied by the ICE (recharging mode) or by the 
DL (regenerative braking mode). Then the battery state of 
charge (SOC) and the residual distance to destination are 
updated. In the following sections a description of each block is 
provided. 
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The Internal Combustion Engine (ICE) model is derived 

from the model O.D.E.C.S., which was developed by the 
authors for the optimal design of engine control strategies in 
spark ignition engines (Arsie et al., 2000) and is sketched in 
Figure 3. It is based on two different modelling approaches, 
depending on the goals and the phenomena to be studied. The 
first class of models is a set of black box (steady state neural 
networks) which provide the engine torque and the exhaust 
emissions as function of engine state (manifold pressure and 
engine speed) and control variables (injection time, spark 
advance). This approach is useful for the control strategy 
design and optimization, for which the recursive evaluation of a 
cost function is required. The optimization procedure can be 
based on either mathematical programming approach or genetic 
algorithms.  

The second engine modelling approach is used to describe 
the dynamic effects of the air-fuel flow into the intake manifold 
and is based on a filling-emptying mean value model, 
neglecting the unsteady fluctuations due to periodic phenomena 
(Aquino, 1981; Heywood, 1988; Hendricks and Sorenson 
1991).  

An engine control unit module (ECU) is used to simulate 
the effects of different strategies for AFR and spark advance 
control.  

Air 
Dynamics

Fuel 
Dynamics Torque 

Emissions

DL
engine speed

air flow

fuel flow

ECU

manifold
pressure

Injection
time

spark advance

TC

to
rq

ue

emissions

throttle
opening

 
1�	����;�%���������������
�����
�	����+�����8��
9'�


.
�!)���+��<�,
�+-�
.�8
+9�
In a parallel hybrid vehicle the electric machine can work 

as a motor or as a generator depending on the actual working 
mode (i.e. electric, hybrid or recharging) (Baumann et al., 
1998; Burch et al., 1999; Arsie et al., 1999). 

In order to reduce the computational effort, the behavior of 
the electric machine is modeled through a 2-D look-up table of 
the efficiency, which is expressed as function of the required 
torque and the motor/generator rotational speed (Guzzella and 
Amstutz, 1999). The efficiency map has been derived from 
literature data and refers to an asynchronous motor with a rated 
power of 30 [kW] at 9000 rpm. The same efficiency has been 
assumed, for both motor and generator working modes. 
Depending on the working mode, the electrical power 
��� is 
given by the following equations (Guzzella and Amstutz, 
1999): 

),( ���������� ��� ωηω=  (1) 

),( ����

����
�� �

�
�

ωη
ω

=   (2) 

Equation (1) holds in case of recharging mode when the EM 
works as generator and charges the battery pack by an electric 
power 
��, while equation (2) is applied for electric and hybrid 
working modes. In these latter conditions, the EM works as 
electric motor and is powered by the battery pack which is 
depleted with an electric power 
��. ��� is the torque provided 
by the EM as required by the Torque Splitter controller and can 
be either negative or positive depending on the EM working 
mode. 
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The driveline model describes the rotational dynamics of 

ICE, electric motor, transmission, final drive and wheels. It is 
composed by a one state dynamic system, neglecting the clutch 
dynamics during gearshift, the torsional shaft deformation and 
the tire elasticity. This approach is suitable for simulating long 
transients where a global analysis on the dynamic behavior is 
required. However, a multi state dynamic model (Ercole et al., 
1999) has been implemented for studies (Arsie et al., 1999, 
2000) on comfort, gear shifting, vehicle-driver interface or 
clutch dynamics.  

The driveline is modelled making use of the Newton’s law, 
reducing all the load torque and the momentum inertia to the 
crankshaft; the aerodynamic losses and the tire rolling friction 
have been considered as resistant torque. Thus, the driveline 
dynamics is described by the following differential equation: 

�������� ���
��
�

� −+=ω
 (3) 

where �� is the equivalent inertia of the powertrain-vehicle 
system, ����, ��
�and ���� are the ICE torque, the EM torque 
and the resistant torque, respectively. In case of electric or 
hybrid working mode, the EM works as a motor and powers the 
driveline (���� >0). On the other hand, in case of recharging 
mode, the EM works as generator and ��� is considered as a 
load torque (��� <0). 
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The Battery package (B) (see Figure 2) has been simulated 

using the ESS block (Energy Storage System) derived from the 
ADVISOR simulator (Burck et al., 1999). This block models 
the batteries taking into account the basic electrochemical 
processes including heat exchange phenomena as well. The 
computational block provides the battery state of charge (SOC), 
the actual current and other variables such as the current 
thermal state as function of the actual electrical power (i.e. 
positive or negative). The actual current is computed starting 
from the electrical power, making use of the Kirchhoff’s 
voltage law. For a complete description of the battery model the 
reader is addressed to the original work of Burch et al. (1999). 
For the current application the battery pack is composed by a 
set of 30 modules of valve-regulated lead-acid (VRLA) 12 V 
batteries. 
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The driver model simulates the human driving behavior in 

following a vehicle mission profile. The driver operation on the 
engine actuators (accelerator and brake pedals) is indeed 
dependent upon physical and psychological factors as well as 
on the actual driving situation. Though the behavior of the 
driver is theoretically known, mathematical algorithms are not 
sufficiently realistic yet. Several approaches are available in the 
literature, addressing to classical control, fuzzy logic or a 
combination of them (Kiencke and Nielsen, 2000; Allen et al., 
1996). In the proposed vehicle model, the control of the 

longitudinal dynamics is performed adopting a fuzzy logic 
controller. In order to reproduce both acceleration and 
deceleration transients the controller operates alternatively on 
the gas pedal or on the brake. The Fuzzy Logic controller, 
whose control map is shown in Figure 4, has two inputs 
corresponding to the actual vehicle acceleration and the error 
between target and actual vehicle speed, and outputs the gas 
pedal position (>0; 0÷100%) or the braking pedal position (<0; 
-100÷0 %). The controller has been designed with seven 
triangular membership functions for the first input and the 
output and five triangular membership functions for the second 
input. The fuzzy inference process is based on the Mamdani 
method assuming the fuzzy logical operator ‘AND’ (i.e. 
minimum operator). For the defuzzification the center of 
gravity method has been applied (Babuška, 1998). 
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The Torque Splitter (TS) manages the on-board energy 

flow and is the main component of the HEV control system. It 
computes the torque to be delivered by the ICE and by the EM 
and evaluates the most suitable working mode (i.e. hybrid, 
recharging, regenerative braking) for the actual system status, 
which is defined by the pedal position, the urban/extra urban 
route, the battery state of charge, the required torque and the 
residual distance (Figure 5).  

Two different strategies are adopted depending on urban or 
extra-urban drive course by means of a logical switch operated 
by the driver. They are based on the fuzzy-logic technique and 
have been designed considering the following main goals: �� 
increase the energy efficiency of the system, ����limit pollution 
in the urban area, ����� guarantee an adequate battery state of 
charge. 

Urban Cycle: the fuzzy logic controller developed for the 
urban driving cycle receives as inputs the torque demand and 
the battery state of charge and outputs the torque supplied by 
the EM, and is composed by 12 membership functions (4 for 
each input/output variable). 
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During the urban cycle the electric working mode is 
assumed as default and the ICE is switched off; the hybrid 
mode is activated when the vehicle speed exceeds the threshold 
of 40 [km/h] and the engine load reaches 30 [Nm]. In this 
condition the ICE supplies most of the required torque. As the 
battery state of charge decreases, the amount of torque supplied 
by the ICE increases in order to save the residual battery 
charge. This control strategy is shown in the fuzzy control map 
in Figure 6, which illustrates the torque supplied by the electric 
motor as function of the torque demand and the battery SOC 
during the urban driving cycle in case of hybrid working mode. 
The behavior of the fuzzy logic controller is also summarized 
by the rules reported in Table I, from which it emerges that, as 
an example, for a great torque demand (High), the torque 
delivered by the EM is reduced from High to Medium Low as 
the battery SOC decreases from High to Low. 

In order to limit pollution, the recourse to the ICE in urban 
area is only allowed to power the vehicle, without supplying 
any extra power for recharging the battery, unless the state of 
charge is below 25 %. In such a case the recharging mode is 
enabled and the engine powers the electric generator until a 
state of charge of 50 % is reached. 

Extra-Urban Cycle: in case of extra-urban driving cycle the 
fuzzy controller estimates the ICE torque as function of the 
torque demand, the battery SOC and the residual distance, and 
is composed by 14 membership functions (3 for the battery 
SOC and the residual distance, 4 for the torque demand and the 
output). �

During the extra-urban cycle the vehicle works in 
recharging mode, the engine supplies the required traction 
torque and powers the electric generator for recharging the 
battery. As the required torque approaches the maximum engine 
torque, the power supplied to the generator is reduced in order 
to satisfy the torque demand. Moreover, when the torque 
demand exceeds the maximum engine torque, the hybrid mode 
is activated and the electric machine commutes from generator 
to motor, supplying the extra torque demand. Figure 7 shows 
the fuzzy control map of the torque delivered by the ICE as 
function of the battery state of charge and the traction torque 
demand. The recharging torque is the difference between the 
torque delivered by the engine (�-axes) and the torque required 
for the traction (Torque Demand). The figure exhibits an 
increase of the recharging torque when the state of charge 
approaches the minimum, unless the traction torque demand is 
close to the maximum engine torque. In such a condition the 
recharging torque is strongly reduced regardless to the battery 
SOC and the EM may assist the ICE in providing the extra 
torque demand. The behavior of the fuzzy logic controller is 
also evidenced by the rules set showed in Table II. 

The influence of the residual distance, which has not been 
considered in Figure 7 neither in Table II for sake of simplicity, 
has a minor influence on the whole strategy. A short residual 
distance weakly affect the controller output by a slight increase 
of the recharging torque, due to the need to recharge the battery 
in a shorter time. 
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The design of the membership functions and the 

assignment of an adequate set of rules is one of the most 
critical task in using fuzzy logic for non-linear control systems 
(Baumann et al., 1998). 

As described in the previous sections, in the present study 
fuzzy logic controllers have been developed for both the driver 
behavior and the energy flow management. Nevertheless, in the 
former case the membership functions have been designed 
heuristically, while an optimization methodology has been 
implemented for the latter case, which is directly connected 
with the key task of improving the energy efficiency of system. 
Moreover, the fuzzy logic controller for the energy flow 
management is composed by 26 membership functions (12 for 
the urban driving cycle and 14 for the extra-urban one), which 
is difficult to design heuristically with a satisfactory accuracy.  

The implemented optimization methodology is based on 
the genetic algorithms theory, which has been widely adopted 
for the optimal tuning of fuzzy controllers (Gurocak, 1999; 
Goldberg, 1989; Herrera et al., 1995) and is detailed in the 
appendix. In order to reduce the computational burden, 
Gaussian membership functions have been selected instead of 

the more common triangular functions, with a significant 
reduction of the parameters to be identified. Gaussian functions 
are indeed univocally defined by a mean value (�) and a 
distribution width (σ), whereas triangular functions require 
three parameters for their definition. The genetic algorithm 
realizes then a tuning procedure operating on the membership 
function peaks (�) within a fixed range (Figure 8) and on the 
distribution widths (σ) for a total of 52 parameters. 
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The control strategy optimization has been performed with 

respect to the specific fuel consumption along the whole 
driving test cycle. Moreover, a constrain has been introduced to 
force the battery SOC to recover its initial value at the end of 
the test cycle. The optimization procedure addresses then to a 
non linear equality-constrained problem (NEP) (Gill et al., 
1989) which has been solved introducing a quadratic penalty 
function. Thus the objective function to be minimized is: 

2),(),,( ������� ������ ∆+= ρσρσ  (3) 

where �� is the specific fuel consumption computed for the 
whole transient, ρ is a penalty parameter and ∆��� is the 
difference between initial and final battery state of charge. The 
results of the control strategy optimization and the 
improvements with respect to an heuristic design of the fuzzy 
controller are discussed in the next section. 

)
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The proposed model has been used to simulate the 

behavior of a HEV along a standard ECE-EUDC driving cycle, 
which accounts for a 4.45 km urban route and a 6.86 km extra-
urban route for a total of 11.31 km. 

According to the main purpose of HEVs to improve fuel 
economy, the main task of the proposed methodologies is to 
design the optimal strategy for the energy flow, reaching the 
maximum energetic efficiency of the whole powertrain.  

Figure 9 illustrates the simulated mission profile: the ECE-
EUDC driving cycle is characterized by fast 
acceleration/deceleration transients in both urban and 
extraurban areas, thus being indicated to evaluate the overall 
vehicle behavior. On the same figure the actual vehicle speed 
profile is superimposed; it exhibits an excellent agreement with 
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the target speed evidencing the satisfactory features of the 
driver behavior model (DB).  

The Figure 10 and Figure 11 focus on the energy control 
strategy actuated by the torque splitter controller (TS), which is 
the most critical component to be designed in order to ensure 
the expected improvement in fuel economy. The figures show 
the torque demand estimated by the driver interpreter (DI) and 
the torque supplied by the EM and ICE along the transient, in 
the urban and extra-urban route respectively.  

In the urban route (Figure 10) the control strategy enables 
the electric working mode; the EM powers the vehicle while 
the ICE is switched off, in order to avoid low efficiency 
working conditions. As the engine load increases, the hybrid 
working mode is enabled and the ICE assists the EM in 
powering the vehicle in order to preserve the battery state of 
charge (see Figure 10, around 140 s).  

In the extra-urban route (Figure 11), the recharging 
working mode is enabled; the ICE works at high load around 
the operating condition with minimum specific fuel 
consumption and powers both the vehicle and the EM for 
recharging the battery pack. During the vehicle deceleration 
(see Figure 11, after 1128 s) the ICE is switched off and the 
generator is powered by the vehicle kinetic energy (i.e. 
regenerative breaking working mode) 

The behavior of the battery state of charge (SOC) along the 
transient is shown in Figure 12. It exhibits a reduction during 
the urban cycle up to 805 s when the EM works as a motor 
depleting the battery pack, with a partial energy recovery due to 
the regenerative braking. During the extra-urban route (from 
805 to 1200 s), the SOC increases due to the recharging 
operation and it reaches a final value which is about 10 % more 
than the initial condition.  

The improvement of fuel economy in HEVs due to the 
recourse to several energy sources (chemical, electrical and 
mechanical)  and the advantages concerned with their optimal 
control strategy of the energy flow are shown in the next 
figures. 

Figure 13 and Figure 14 show the ICE working conditions  
during the ECE-EUDC driving cycle vs. the ICE global 
efficiency map, in case of non-optimized and optimized energy 
control strategy, respectively. The comparison of the two 
figures evidences that in case of optimal control strategy, the 
operating conditions are moved toward the high efficiency area 
(over 30 %), corresponding to the minimum specific fuel 
consumption.  

The specific fuel consumption for the whole driving cycle 
is shown in Figure 15. The results are referred to the HEV in 
case of optimized and non optimized energy control strategy 
and to an equivalent standard ICE vehicle, with a mass reduced 
by 400 kg, due to the absence of the battery pack and the EM. 
The comparison evidences the progressive reduction of specific 
fuel consumption, moving from the standard ICE powertrain to 
the optimised HEV, through the non optimised HEV. 
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The paper has dealt with the simulation of a parallel 

Hybrid Electric Vehicle (HEV) and the design of the optimal 
control strategies for the on board energy flow. A powertrain 
model has been used to simulate the dynamic behavior of all 
the HEV components, making use of different modeling 
approaches ranging from mean value models (MVM) to fuzzy 
logic, through neural networks. MVMs have been used to 
simulate the air-fuel dynamics in the intake manifold and the 
driveline-vehicle dynamics. Neural Networks have been used 
to model the in-cylinder processes for estimating engine 
performances. Fuzzy logic controllers have been designed for 
the most critical task, which is the management of the energy 
flow between ICE, EM and battery pack.  

The proposed model structure allows to simulate the HEV 
behavior for a given driving cycle and to design optimal energy 
control strategies for improving fuel economy. This objective 
has been pursued making use of genetic algorithms, which  
have been implemented to identify the parameters of the fuzzy 
logic controllers. 

The proposed simulation and optimisation methodologies 
have been tested for a standard ECE-EUDC driving cycle, 
evidencing a reduction of about 20 % in the specific fuel 
consumption with respect to a standard ICE vehicle. Moreover, 
the energy control strategy optimization, performed via genetic 
algorithms, has given a further improvement of the global 
efficiency by 10 %. Future works will be devoted to meet the 
conflicting goals to improve fuel economy and reduce 
environmental impact, by the optimization of the fuzzy logic 
controller with respect to both fuel consumption and exhaust 
emissions. 
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The fuzzy logic theory has found wide applications in the 

field of modeling and control of dynamic systems, due to its 
capability to integrate information from several sources, such 
as physical laws, empirical models and measurements data 
(Babuška, 1998). 

Fuzzy models can be seen as logical models based on the 
use of rules as: 

5����#��+�����/������$�������	
��#�����#����������6����$�����7�

which establish logical relation between the system variables 
(i.e. battery SOC and recharging torque) and relate their 
qualitative values (���, ����). The interface between the 
linguistic qualitative values in the rules and the numerical 
input/output variables is given by the membership functions (or 
fuzzy sets). 

The membership function µ�� (8) of a numerical variable  
(8) can be seen as a transfer function from the space 9 to a new 
ordered space, which expresses the degree of fulfillment of the 
input 8 to the fuzzy set µ��(8): 

µ� (8) : 9 ⇒  [0,1]    (A.1) 

The fuzzy logic modeling is performed through three 
different process: fuzzification, inference, defuzzification 
(Babuška, 1998). 

�
��������
����: it is the process of evaluating the degree of 
membership µ��:8� of the input 8 to the fuzzy set %. In case of 
different input variables, the logical �3�# rule 1� is: 

�� 81 is %�1 �

 82 is %�2  �

 . . . �

 8
  is %�
  ��	
 / is ��   (A.2) 

and the fuzzification process creates a multivariate ����/3$��; 
whose degree of fullfillment is estimated with the intersectrion 
(∩) of the � degrees of fullfillments of the antecedents: 

β�<�µ��1(81)�∩�µ��2(82)�∩..∩�µ��
(8
)�<�min(µ���;;,;µ��
) (A.3) 

���������: is the process of deriving an output fuzzy set given 
the rules and the inputs. The most commonly used method is 
the Mamdami inference process, which is based on three steps: 

�� estimation, for each rule �, of the degree of fulfillment β� of 
the antecedent: 

β��<�µ��1(8�)�∩�µ��2(8�)�∩…∩�µ��
(8�) (A.4) 

�� evaluation, for each rule, of the output fuzzy set ���: 

µ���(/)�<�β��∩�µ��(/);�∀ �/�∈ �=> (A.5) 
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�� evaluation of the aggregated output fuzzy set by taking the 
maximum union of the individual conclusions: 

µ���(/)<�max��1�
�µ���(/);�∀ �/�∈ �=> (A.6) 

����������
����: is a transformation that replaces a fuzzy set by 
a single numerical value representative of that set. The most 
commonly used defuzzification method is the centre of gravity: 
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 (A.7)                                    

where �	 is the number of discretized values /	 in =>. 
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Genetic algorithms are adaptive optimization methods, 

which according to the Darwin theory, emulate the genetic 
processes of the biological species. The algorithms are based 
on the manipulation of numerical strings representing the 
system variables in binary code. The computational process 
describes the reproduction, the mutation and the decay of a 
population of individuals, each represented by a finite-length 
numerical string (Goldberg, 1989). The structure of a genetic 
algorithm is composed by an iterative procedure through the 
following four main steps:  

1. Creation of an initial population Po. 
1. Evaluation of the performance of each individual ) of 

the population Po by means of a fitness function. 
2. Application of the genetic operators: Reproduction, 

Crossover and Mutation. 
3. Iteration on the steps 2) and 3) for a preset number of 

generations. 
 

�����
�������
������ to start the algorithm an initial population 
of individuals (or chromosomes) is needed; for the current 
application an individual is a fuzzy logic controller 
characterized by a set of membership functions and a 
population is a collection of fuzzy logic controllers among 
which the method is searching for the best. The individuals are 
formed by encoding the initial membership functions which are 
heuristically generated by the designer. 
�����������������a fitness value is associated to each individual, 
expressing the performance of the related solution with respect 
to a fixed objective function to be minimized or maximized. 
������������� is the process in which the most fit individuals 
(chromosomes) in the population receive correspondingly large 
number of copies in the next generation. 
This procedure increases the quality of the chromosomes in 
finding the optimal solution to the tuning problem. Every 
solution (individual) is reproduced in a number of copies 6 
proportionally to its fitness (��), by means of a methodology 
which is known as biased roulette wheel:  

∑
=

⋅=
�

�

�

�

�
�

1

 (B.1) 

where � is number of individuals of the population. 
���������: when a collection of good individuals has been 
selected, they exchange information by the crossover operator. 
Two chromosomes (parents) randomly swaps part of them in 
the range [1, �-1] (�� is the string length), thus generating two 
new chromosomes (offsprings) (Figure A.1). This mechanism 
makes the best performing individuals to mix and match each 
other in order to evidence their qualities. 

Pa re nts           1 0 1 0 0 0 1 1 1 0                 0 0 1 1 0 1 0 0 1 0 

Offspring         1 0 1 0 0 1 0 0 1 0                 0 0 1 1 0 0 1 1 1 0 

Crossove r point Crossove r point 

 
1�	�����'&�@����

�2����3������'�

�
���
����� is a small perturbation of a chromosome by 
randomly flipping one of its bits. It allows investigating new 
chromosomes which are not directly derived from the previous 
generation.  
The next generation is then formed by some individuals from 
the previos generation, some offsprings and some 
perturbations. After a preset number of generations, the 
algorithm outputs the individual with the best fitness, which 
corresponds to the optimal solution of the problem. 


