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The paper focuses on the simulation, analysis and control of the energy flows in a parallel 

hybrid electric vehicle (HEV). HEVs operation is concerned with the on board conversion of 
chemical, electrical and mechanical energy and its optimal control is essential in order to increase 
the global system efficiency. 

A dynamic model is used to describe the driver-vehicle interaction for a generic transient and 
to simulate the vehicle driveline, the internal combustion engine (ICE) and the electric 
motor/generator (EM). An estimate of future vehicle load is performed with a neural network to 
optimize the supervisory control strategy during the estimated future time window.  

A description of the whole model is presented and the results obtained from the simulation of 
for a real driving cycle are reported.  

 
Topics / Electric & Hybrid Vehicles, Powertrain Control and Management, Modeling and Simulation. 

INTRODUCTION 
In the last years the increasing interest in energetic 

and environmental problems has given a strong impulse 
toward the development of alternative propulsion 
systems for automotive applications. The hybrid electric 
vehicles (HEVs) seem to be a good and feasible 
solution from energetic-environing as well as industrial 
point of view. They are equipped with an electrical 
traction system, composed of a set of batteries and an 
electric motor/generator (EM) which is coupled with a 
standard internal combustion engine (ICE). Thus, HEVs 
present all the advantages of the electric traction (e.g. 
limited pollution and acoustic impact, significant energy 
saving, and improved drivability) along with the typical 
features of ICE such as high autonomy (Riley, 1994; 
Hochgraf et al. 1996; Powell et al., 1998; Nagasaka et 
al., 1998; Baumann et al., 1998; Guzzella and Amstutz, 
1999).  

Depending on the powertrain layout, two different 
HEVs configurations can be considered: series hybrid 
vehicles and parallel hybrid vehicles. In the series HEV, 
the ICE powers an electric generator for recharging the 
battery pack and the vehicle is powered by an electric 
motor. In the parallel architecture, both ICE and EM are 
mechanically coupled to the transmission and can 
simultaneously power the vehicle. This configuration 
offers a major flexibility for different working 
conditions (i.e. driving cycle).  

The dynamic model designed for simulating the on-
board energy flows (i.e. mechanical, chemical, 
electrical) during arbitrary driving cycles, accounts for 
the following working modes (Arsie et al., 2002-I): 

[1] Electric mode: the vehicle is powered by the EM 
while the ICE is switched off.  

[2] Hybrid mode: the EM works as motor and assists 
the ICE in powering the vehicle.  

[3] Recharging mode: the ICE powers the EM which 
works as electric generator to charge the battery 
pack. 

[4] Regenerative braking: during vehicle deceleration 
the EM works as a generator to charge the battery 
pack, thus converting the vehicle kinetic energy 
into electrical energy. 
In the model, the above modes are selected 

according to the control strategy selected trough a 
Dynamic Programming procedure to minimize the fuel 
consumption. The optimization is performed starting 
from a provisional drive load estimate performed with a 
Time Delay Neural Network based dynamic model. 

In the following the powertrain model, the energy 
control strategy and its optimization procedure are 
described. In the results section, the simulation of a real 
driving schedule is presented and discussed.  

SYSTEM CONFIGURATION 
The powertrain of the parallel hybrid vehicle 

considered for the present study is sketched in Figure 1: 
the powertrain has a spark-ignition IC engine (4 
cylinders, 16 valves, 1242 cm3, 65 kW) and an electric 
asynchronous three-phase motor/generator (30 kW); a 
lead-acid battery package is used for the electric energy 
storage. A cogged belt connects the thermal engine and 
the electric motor and an electromagnetic clutch 
decouples the engine from the drivetrain. In order to 
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focus the attention on the energy flows control strategy 
and to reduce the computational effort, the driveline has 
been simulated as a rigid body, neglecting torsional 
elasticity and clutch dynamics (Arsie et al., 2000). 
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Figure 1 - Parallel hybrid vehicle powertrain - 

ICE=Thermal Engine; C= Electromagnetic Clutch; 
P1, P2=Pulleys; MI=Mechanical Interface; GB= 
Gear Box or Continuous Variable Transmission 
(CVT); D= Differential Gear; CB=Cogged Belt; 
EM=Electric Motor; B=Battery. 

MODEL DESCRIPTION 
The developed model describes the main 

powertrain components and simulates the driver 
behaviour while following the velocity target. A block 
diagram of the complete system is sketched in Figure 2 
where all the main physical sub-models, the control 
tasks and the mechanical torque paths are shown.  

The Driver Behaviour (DB), described through a 
fuzzy-logic based model, provides the actual gas pedal 
position while following the target velocity profile of 
the vehicle. The longitudinal dynamics control is 
performed adopting a fuzzy logic controller (Babuška, 
1998). The pedal position and its derivative are used as 
input to the Driver Interpreter block (DI), which 
estimates the torque (positive and negative for traction 
or braking manoeuvres, respectively) demanded to meet 
the driver intention. The Driver Interpreter output is 
split into a torque demand for the ICE and the EM by 
the supervisory controller (VMU).  

A throttle controller is implemented (TC) to 
provide the effective throttle opening position as 
function of the ICE load demand, which is evaluated by 
the VMU. The throttle opening is assumed as input for 
the ICE model to simulate the engine behaviour. 

The effective power delivered by the electric 
machine (EM) is estimated from the electric power 
demand computed by the VMU, accounting for the EM 
efficiency stored into a look-up table.  

The power provided by both the EM and the ICE is 
used as input for the driveline model (DL) to compute 
the actual rotational speed of EM and ICE and the 
vehicle speed.  

During the battery recharging the mechanical 
torque to the generator is supplied by the ICE 
(recharging mode) or by the DL (regenerative braking 
mode), then the battery state of charge (SOC) is 
updated. In the following sections a description of each 
block is provided. 
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Figure 2 - Block diagram of the parallel hybrid vehicle 

model with the driver sub-model (DB): DI=Driver 
Interpreter; VMU=Vehicle Management Unit; 
TC=Throttle Controller; ICE=Thermal Engine; 
EM=Electric Motor; DL=Driveline; B=Batteries. 

INTERNAL COMBUSTION ENGINE MODEL 
The Internal Combustion Engine (ICE) block is 

derived from the model O.D.E.C.S., which was 
developed by the authors for the optimal design of 
engine control strategies in spark ignition engines 
(Arsie et al., 2000). It is based on two different 
modelling approaches, depending on the goals and the 
phenomena to be studied. The first class of models is a 
set of black boxes (steady state neural networks) which 
provide the engine torque and the exhaust emissions as 
function of engine state (manifold pressure and engine 
speed) and control variables (injection time, spark 
advance). This approach is useful for the control 
strategies’ design and optimization, for which the 
recursive evaluation of a cost function is required. 

The second engine modelling approach is used to 
describe the dynamic effects of the air-fuel flow into the 
intake manifold and is based on a filling-emptying mean 
value model, neglecting the unsteady fluctuations due to 
periodic phenomena.  

ELECTRIC MACHINE MODEL (EM) 
In a parallel hybrid vehicle the electric machine can 

work as a motor or as a generator depending on the 
actual working mode (i.e. electric, hybrid or recharging) 
(Baumann et al., 1998; Burch et al., 1999; Arsie et al., 
2002-I). 

In order to reduce the computational effort, the 
behavior of the electric machine is modeled through a 
2-D look-up table of the efficiency, which is expressed 
as function of the required torque and the 
motor/generator rotational speed (Guzzella and 
Amstutz, 1999). The efficiency map has been derived 
from literature data and refers to an asynchronous motor 
with a rated power of 30 [kW] at 9000 rpm. The same 
efficiency has been assumed, for both motor and 
generator working modes. Depending on the working 
mode, the electrical power PEM is given by the following 
equations (Guzzella and Amstutz, 1999): 
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Equation (1) holds in case of recharging mode when the 
EM works as generator and charges the battery pack by 
an electric power PEM, while equation (2) is applied for 
electric and hybrid working modes. In these latter 
conditions, the EM works as electric motor and is 
powered by the battery pack which is depleted with an 
electric power PEM. TEM is the torque provided by the 
EM as required by the VMU controller and can be 
either negative or positive depending on the EM 
working mode. 

DRIVELINE (DL) 
The driveline model describes the rotational 

dynamics of ICE, electric motor, transmission, final 
drive and wheels. It is composed of a one state dynamic 
system, neglecting the clutch dynamics during gearshift, 
the torsional shaft deformation and the tire elasticity. 
The driveline is modelled making use of the Newton’s 
law, reducing all the load torque and the momentum 
inertia to the crankshaft; the aerodynamic losses and the 
tire rolling friction have been considered as resistant 
torque. Thus, the driveline dynamics is described by the 
following differential equation: 

ResEMICE TTT
dt
dI −+=
ω  (3) 

where I is the equivalent inertia of the powertrain-
vehicle system, TICE, TEM and TRes are the ICE torque, 
the EM torque and the resistant torque, respectively. In 
case of electric or hybrid working mode, the EM works 
as a motor and powers the driveline (TEM >0). On the 
other hand, in case of recharging mode, the EM works 
as generator and TEM is considered as a load torque (TEM 
<0). 

BATTERY’S MODEL (B) 
The Battery package (B) (see Figure 2) has been 

simulated using the ESS block (Energy Storage System) 
derived from the ADVISOR simulator (Burck et al., 
1999). This block models the batteries taking into 
account the basic electrochemical processes including 
heat exchange phenomena. The computational block 
provides the battery state of charge (SOC), the actual 
current and other variables such as the current thermal 
state as function of the actual electrical power (i.e. 
positive or negative). The actual current is computed 
starting from the electrical power, making use of the 
Kirchhoff’s voltage law. The battery pack is composed 
by a set of 30 modules of valve-regulated lead-acid 
(VRLA) 12 V batteries. For a complete description of 
the battery model the reader is addressed to the original 
work of Burch et al. (1999).  

CONTROL STRATEGY 
In the hybrid vehicle the main control task is 

performed by the Vehicle Management Unit (VMU), a 

supervisor unit which defines the ratio between the 
energy supplied by the thermal engine and the energy 
supplied by the batteries. According to this ratio one of 
the working modes (Electric, Hybrid, Recharging) is 
activated, except for the regenerative braking mode 
which is actuated during the braking manoueuvre. The 
objective of the supervisor controller is to split the 
power between the energy systems to achieve the 
minimum fuel consumption. To accomplish such an 
objective, several control strategies can be implemented 
according to various control techniques and different 
design procedures. Moreover these strategies can either 
be static (Arsie et al., 2002-I) or dynamic.   

The on-line optimization of the energy flows 
splitting between thermal engine and batteries is 
performed via Dynamic Programming Technique (DP). 
This methodology allows to compute the sequence of 
control actions (i.e. the power splitting) over a time 
horizon as function of the vehicle load. When the 
vehicle load schedule is known in advance a global 
optimum solution would be obtained off-line. Thus the 
time sequence of the control variables can be stored on 
the VMU and applied during the scheduled vehicle 
manoeuvre. When the vehicle is used during different 
schedule the optimality of the control sequence is not 
guaranteed. On the other hand if the vehicle schedule is 
unknown, which is the majority of the real applications, 
a global optimum technique is therefore not feasible 
unless a prediction of the vehicle load is available. Thus 
the dynamic programming global optimum control 
solution is strictly related to the correctness of the 
vehicle load schedule prediction. Then, a prediction of 
the vehicle load must be supplied to the dynamic 
programming algorithm to find the control variable 
sequence that minimize the fuel consumption over the 
predicted time horizon. However, a fully predictive 
model cannot be easily built since a direct approach 
would involve the knowledge of several exogenous 
variables (e.g. driver behaviour) which are not 
predictable in a deterministic fashion. Nevertheless, a 
reliable simulation can be performed assuming that a 
knowledge of the sub-systems involved in the vehicle 
load evaluation are available or derivable from previous 
data. Thus a dynamic prediction of the vehicle load can 
be achieved as function of the previous load states. This 
approach has been used in the current work to 
determine a sequence of temporary vehicle load series 
that is fed to the dynamic programming algorithm to 
compute on-line the optimal control sequence. 

Vehicle load prevision 
The temporary vehicle load prediction, assumed in 

the optimization of the control strategy, is estimated 
making use of a Recurrent Neural Network (RNN). 

In the recent years the Neural Networks have been  
successfully used as black-box models for the 
identification and control of nonlinear dynamic systems. 
Because of their high nonlinear mapping capabilities 
and good generalization, Neural Networks can easily 
solve many practical modeling problems. The Recurrent 
Neural Networks (RNNs) meets this requirement 
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because of their dynamic properties. The RNNs are 
derived from the static Multi Layer Perceptron Feed 
Forward (MLPFF) networks by introducing feedback 
connections among the neurons. Thus, a dynamic effect 
is introduced into the computational system by a local 
memory process. Moreover, by retaining the non-linear 
mapping features of the MLPFFs, the RNNs are suitable 
for black-box non-linear dynamic modeling (Patterson, 
1995; Haykin, 1999). When the network processes only 
its delayed outputs, the computational structure is called 
Time Delay Neural Network (TDNN) and the 
corresponding generic relationship reads as: 
( ) ( ) ( ) ( )[ ]θθθ |ˆ...,,|1ˆ,|ˆ1ˆ ntytytyFty −−=+  (4) 

where ŷ represents the Network output while θ is the 
parameters vector of the model whose dimension is 
function of the number of neurons used. The index n is 
the backward time horizon (i.e. the length of the vector 
containing previous information) and is set according to 
the complexity of dynamics being simulated. For a 
detailed description of the RNNs structure and their 
main implementation issues the reader is addressed to 
the abounding literature (e.g. Patterson, 1995; Haykin, 
1999) and to a previous paper (Arsie et al., 2002-II). 

For the present work the network structure is 
composed of 15 inputs (i.e. the delayed network 
outputs), 7 neurons in the hidden layer and one output. 
The network parameters are found making use of an 
identification procedure based on a real velocity profile 
(training profile) with a continuous simulation from the 
start to the end of the schedule. On the other hand 
during the on-line application a batch simulation is 
considered by predicting only 20 seconds. The predicted 
load profile is assumed as the future load in the on-line 
optimization of the control strategies. At the beginning 
of each batch the real load profile of the previous 15 
seconds is feed to the network in order to restart the 
simulation for the next 20 seconds with real data. Thus 
the precision of the prediction decreases as the end of 
the time horizon is approached. Indeed the last 5 values 
of the predicted power schedule are function of 
simulated data only. The time windows of 20 seconds 
have been selected, after a parametric analysis 
conducted for some real velocity profiles, as the best 
compromise between the length of the time windows 
and the simulation precision. 

Dynamic Programming 
The Dynamic Programming (DP) is a technique 

that allows to solve an optimization problem through a 
sequence of successive decompositions in a multi-stage 
fashion. The basic theory of this method is based on the 
principle of optimality formulated by Bellman (1957) 
who the reader is addressed for a complete description 
of the technique. 

For the purpose of the present application the 
Dynamic Programming technique has been 
implemented to find the control law that minimize the 
overall fuel consumption over a scheduled or estimated 
power demand of a hybrid vehicle. The DP technique is 
based on the optimization of the control variable vector 

u(t) along the time horizon considered. The 
optimization is performed after the discretization of the 
system state variable trajectory along time 
[X(t1),…,X(tn)]. To apply the DP technique to the hybrid 
vehicle control, both the mechanical power supplied by 
the thermal engine and the battery State Of Charge SOC 
have been chosen as state variables, thus X(t)=[PICE(t), 
SOC(t)]. Therefore, once the required traction power 
(Pt) is known the electric motor power is computed as 
(PEM= Pt -PICE). The power deliverable by the thermal 
engine is discretized with elementary steps of 1 kW, 
while the SOC interval considered [0.65,0.75] is splitted 
into elementary steps of 4.10-5.  

The control variable u(t) is associated with the 
thermal engine control, influencing directly the output 
power PICE at each time step. The control action 
generates the transition in the states space from the 
actual state X(t) to the next state X(t+1) according to the 
relationship X(t+1)=f(X(t),u(t),t); where f is a function 
related to the powertrain model. A cost is associated 
with each transition in the states space and is defined as 
follows: 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )ttutXpttutXCttutXg ICE ,,,,,, +=  (5) 

where CICE is the chemical energy used by the thermal 
engine (i.e. the fuel consumption during the time 
interval ∆t) and the term p is a penalty cost that 
accounts for the deviation of the SOC from the 
reference value. In the equation (5) the fuel 
consumption CICE is computed as the average value 
between the actual and the next step values. The penalty 
term is expressed as p= β(t)∆SOC(t) with ∆SOC(t) = 
|0.7-SOC(t)| and β(t) = αt, where α is an heuristic 
penalty factor chosen as function of the time horizon 
(Brahma et al., 2000). 

The optimal control sequence, u(t) is found by 
minimizing the functional cost (5): 

( ) ( )∑
−

=∈
=

1

0
),(),(min

M

kUu
kkukXgXJ  (6)  

where M is the length of the discretized vehicle mission 
and U represents the constraints imposed on the control 
variable to satisfy the power demand and to guarantee 
the power transition between two states. A systematic 
solution to the above problem can be determined 
recursively via the backward procedure proposed by 
Bellman’s as follows (Kang et al., 2001):  
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From the equation (7) the algorithm starts to compute 
the control variable u from the final step, then the 
previous control sequence is evaluated through the 
recursive minimization formula (8). The optimal control 
strategy is any minimizer of (7) and (8). The function 
Jk(x(k)) represents the minimum cost associated to the 
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transient process in the interval [k, M-1] starting from 
the state X(k) at the current time step. 

RESULTS 
The proposed model has been used to simulate the 

behaviour of a HEV along a real mission profile. The 
simulated vehicle in its basic configuration weights 
1500 kg while an additional mass of 400 kg has been 
considered for the hybridization. The prediction of the 
vehicle load during the transient has been performed 
making use of a Time Delay Neural Network. The 
training of this Neural Network has been carried out 
with referring to a different mission profile with respect 
to that considered for the on-line optimization test. The 
training velocity profile, which has been defined as the 
combination of urban and suburban drive courses,  lasts 
3600 seconds and is 22 km long, while a shorter (1000 
seconds) velocity profile time history has been 
considered for the optimization test with a route of 6.8 
km. This test profile refers to a sequence of suburban 
and urban courses, shown in the Figure 3, and is 
characterized by fast acceleration/deceleration 
transients. 
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Figure 3 – HEV control strategy test velocity profile.  

Figure 4 and Figure 5 focus on the power control 
strategy actuated by the optimized VMU. The power 
splitting between thermal engine and electric motor is 
reported for suburban and urban areas, respectively. The 
load power (dotted black line) attains either positive or 
negative values for traction or braking manoueuvres, 
respectively. The power delivered by the engine 
(continuous black line) ranges always in the positive 
area of the plot. According to the actuated strategy (i.e. 
pure thermal, hybrid, recharging) the plot indicates the 
energy flowing to the driveline and/or to the electric 
motor. The continuous gray line in the figures 
represents the electrical power from (positive) or to 
(negative) the batteries during traction  or recharging, 
respectively. 

In the suburban transient of Figure 4 all the 
operating mode are activated. In the interval 200-220 
seconds the thermal engine delivers the power for the 
traction and supplies an extra power to the batteries for 
recharging. A regenerative braking manouevre occurs  
between 220 and 230 seconds, while the pure electric 
mode is activated from 230 and 240 seconds. On the 
other hand the hybrid traction occurs for few seconds 
during high accelerations at approx 260 and 285 

seconds. For the urban transient (Figure 5), the 
maximum traction power requested is limited with 
respect to the suburban transient, thus a major flexibility 
in the combined use of thermal engine and electrical 
motor can be achieved. Figure 5 shows that the hybrid 
mode is activated for most of the transient, while only 
in few cases pure thermal and pure hybrid traction 
modes are actuated. These choices are made by the 
control strategy in order to achieve the highest 
efficiency in the time interval considered for the 
dynamic programming optimization, while constraining 
the battery State Of Charge close to the fixed value of 
70%. 
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Figure 4 – Power splitting in the suburban route. 
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Figure 5 – Power splitting in the urban route. 

The battery State Of Charge (SOC) along the 
transient of Figure 3 is shown in the Figure 6. In the 
figure a comparison is made between the SOC attained 
during the test transient, whose power splitting has been 
described before (see Figure 4 and Figure 5),  and the 
one obtained for a simulation performed on the same 
transient without the vehicle load prediction. This latter 
case corresponds to the situation when the load profile 
is known in advance and the Dynamic Programming 
optimization is performed without making the load 
prediction via Time Delay Neural Network (TDNN).  
Both State Of Charge curves are bounded in a narrow 
region around the 70% of SOC, thus achieving the 
charge sustaining batteries operations. 

The improvement in fuel economy for HEV due to 
the recourse to different energy sources (chemical, 
electrical and mechanical) and the advantages 
concerned with their optimal management are shown in 
the Table 1. From the table it emerges that an 
enhancement of 45% in fuel economy has been 
achieved with respect the conventional vehicle 
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configuration equipped with the same thermal engine. A 
further consideration on the precision achieved with the 
load prediction model (TDNN) is evidenced in the 
table. Indeed the fuel economy for the simulation with 
load prediction (TDNN) and the simulation performed 
with the advance knowledge of the transient load 
(Reference) are comparable. This latter result confirms 
that the proposed method based on a Time Delay Neural 
Network is suitable for the prediction of the vehicle 
load. Moreover the precision is consistent with the 
requirement of on-board Dynamic Programming 
optimization of the control strategy to achieve the 
minimum fuel consumption with a battery charge 
sustaining strategy. These results are encouraging 
toward the development of control strategies that 
account for a prevision of the future system states. 
Nevertheless, the on-board implementation of the 
optimization technique is not yet feasible because of the 
computational effort needed.   
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Figure 6 – Battery State of Charge along the test 

transient of Figure 3. Comparison between the 
predicted (TDNN) load transient case and the 
optimal one (Reference). 

Table 1 – Fuel economy comparison between hybrid 
and conventional vehicle. 

Fuel economy [km/l] 
Hybrid Conventional 

TDNN Reference  
16.1 16.8 11.1 

CONCLUSIONS 
The paper has dealt with the simulation of a parallel 

Hybrid Electric Vehicle (HEV) and the design of its 
optimal control strategies. A powertrain model has been 
used to simulate the dynamic behavior of all the HEV 
components, making use of different modeling 
approaches ranging from mean value models (MVM) to 
fuzzy logic, through neural networks.  

An optimization technique, suitable for on-board 
application, based on Dynamic Programming has been 
implemented to find the control strategy that minimizes 
the fuel consumption over a time horizon with a battery 
charge sustaining strategy. Since the Dynamic 
Programming requires the knowledge of the vehicle 
load for the actual time horizon, a provisional estimate 
of the load has been considered through the 
implementation of a Time Delay Neural Network. 

The results obtained for a real drive schedule show 
a satisfactory level of precision achievable with the load 
prediction model which allows to optimize the control 
strategies. The fuel economy has been improved of 45% 
with respect to a conventional vehicle with the same 
thermal engine. 
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