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In order to maximize the benefits of Hybrid Solar Vehicles, battery management should account 
for two conflicting requirements: at the end of driving the final state of charge (SOC) should be 
low enough to allow full storage of solar energy captured in the next parking phase, whereas the 
adoption of an unnecessary constantly-low value of final SOC would give additional energy losses 
and compromise battery lifetime. The adoption of on-board solar energy prediction can be 
therefore beneficial to select the best solution in terms of energy management. In order to assess 
the benefits achievable by using weather forecast, the effects of different strategies of selection of 
final SOC are studied by simulation over hourly solar data at different months, and the effects of 
forecast accuracy on fuel economy is analyzed. Finally, the forecast precision achievable by use of 
available on-line forecast tools is analyzed by comparison with sun power measured data. 
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1. INTRODUCTION  
  
Hybrid Solar Vehicles (HSV), derived by integration of 
Hybrid Electric Vehicles with Photo-Voltaic sources, 
may represent a valuable solution to face both energy 
saving and environmental issues, particularly in urban 
driving [1,2,8]. Previous studies with optimal design 
techniques have shown that, in order to maximize the 
benefits of solar energy, a re-design of the vehicle and 
powertrain would be necessary [1]. Moreover, the 
management strategies of a HSV differ significantly 
from Hybrid Electric Vehicles (HEV), that usually adopt 
charge sustaining strategies, because the battery can be 
recharged also during parking time, as it happens for 
Plug-In Hybrid Electric Vehicles (PHEV). On the other 
hand, HSV’s differ also from these latter vehicles: while 
for PHEV’s the recharge is not free and is mainly 
finalized to extend the vehicle range, for HSV’s the 
input energy is free, and solar recharge should be 
maximized not only to extend the range, but mainly to 
minimize fuel consumption and CO2 emissions. 
Therefore, at the end of driving cycle the final state of 
charge (SOC) should be sufficiently low to make room 
for the solar energy to be stored in the battery in the 
next parking phase. But, at the same time, the adoption 
of an unnecessary low value of final SOC would result 
in additional battery losses and in reduced fuel economy. 
The influence of SOC on battery losses also depends on 
the type of battery, being greater in traditional 
Lead-Acid batteries and lower with Lithium-Ion 
batteries. But, apart energy losses, the adoption of very 
low or high SOC also reduces battery lifecycle, a critical 
factor for electric and hybrid vehicles.  
It therefore emerges the need to estimate the solar 

energy expected in next parking phase. Moreover, 
further benefits could be achieved by previous 
knowledge of driving power [5] and of length of driving 
cycle, since the most favorable trajectory in attaining 
the final SOC could be realized.  
The recourse to Vehicle to Grid (V2G) technology [6] 
could partly solve this problem, since the surplus of 
solar energy could be transferred to the grid, when 
battery is full. On the other hand, even if this technology 
will diffuse, it is unlikely that V2G connecting points 
would be available worldwide in all parking locations, 
at least in a medium term scenario. 
In next chapter, the results of simulation analysis 
performed on a Hybrid Solar Vehicle for different 
strategies of selection of final SOC are studied, also 
considering the effects of solar energy forecast, at 
different levels of precision. Then, the precision 
achievable in estimating solar energy by means of 
on-line weather forecast tools is studied, in order to 
estimate the benefits that could be achieved in real 
cases. 
 
2. SOC MANAGEMENT IN A HSV 
 
In the following, the effects of different strategies of 
selection of final SOC are studied by simulation over 
hourly solar data at different months and locations, in 
order to assess the benefits achievable by estimating the 
energy expected in next parking phase. The simulations 
are carried out with a dynamic model of a HSV 
previously developed [1], including a Rule-Based 
Energy Management Strategy (RBEMS) [5]. This 
technique considers the effects of operating variables on 
fuel consumption and SOC, including thermal transient 
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effects related to engine start and stop, as well as 
expected daily solar radiation. It has been shown that 
the fuel consumption obtained by this implementable 
strategy is very near to the benchmark obtained in 
off-line by Genetic Algorithms [5]. 
The RB control architecture consists of two tasks, 
external and internal, respectively: 

1. External task: defines the desired final state of 
charge to be reached at the end of the driving 
cycle to enable full storage of solar energy 
captured during the following parking phase. 

2. Internal task: estimates the average power 
delivered by the ICE-EG (i.e., Internal 
Combustion Engine – Electric Generator group) 
and SOC deviation from final state of charge as 
function of average traction power. 

Specifically in this work, the RB strategy was modified 
so as to incorporate both perfect and real solar 
prediction to enhance battery management in driving 
phases. A solar calculator, based on the analysis of time 
series of solar radiation over about 30 years, has been 
used [www.nrel.gov/rredc/pvwatts] to estimate the 
hourly solar energy achievable at different locations and 
months on a solar roof in horizontal position. 
 

Nominal ICE-EG power [kW] 43 
Nominal EM power [kW] 90 
Number of Lead-acid battery modules 21 
Battery capacity CB [kWh] 6.3 
PV horizontal surface [m2] 3 
Coefficient of drag (Cd) 0.33 
Frontal area [m2] 2.3 
Rolling resistance coefficient [/] 0.01 
Weight [kg] 1434 

Tab. 1. HSV specifications. 
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Tab. 2. Overall resume of the scenario analysis 
outcomes. 

 
Some results have been recently obtained [7], 
simulating a Hybrid Solar Vehicle, which characteristics 

are listed in Tab. 1, over hourly solar data in Los 
Angeles over ECE-EUDC cycles for three different 
efficiencies of solar panels. For each case, the best 
parametric case, obtained with a fixed choice of final 
SOC, is compared with the result obtained by the rule 
based approach, using solar energy forecast. 
 

 

 
Fig. 1- Simulated Fuel Consumptions for Scenario 2 
(ηPV =0.19) and 3 (ηPV =0.25) 

 

 
Fig. 2 - Global simulation of July 1988. Scenario 2 optimal case with 

perfect solar power prediction. 
 

 
Fig. 3- Schematic representation of a generic daily 
simulation. 
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The results confirm that fuel consumption is 
significantly affected by the choice of final battery SOC, 
and that the lowest values are obtained by predicting the 
solar energy available during parking phase (Fig.1). In 
this case, the occurrences of battery saturation are 
minimized (fig.2), also avoiding unnecessary operation 
at low SOC values, where fuel economy is penalized. 
 
2.1.Effects of forecast precision on vehicle 
management 
The results presented in previous figures have been 
obtained by a perfect prediction of the solar energy that 
can be captured in next parking phase. This prediction, 
of course, involves the estimation of both solar power 
and parking period, in terms of starting/ending time. It 
is therefore important to evaluate the sensitivity of the 
fuel consumption reduction to the precision in 
estimating the incoming solar energy. A series of 
simulations have been performed, introducing errors 
with respect to perfect prediction (the estimation of final 
SOC is performed with the perturbed data, while the 
simulation of fuel consumption utilizes the original 
data). The expected solar power data have been 
modified by introducing a Gaussian error, according the 
following formula: 

,   (1) 
The real power value Pref is perturbed by adding a 
positive or negative term proportional to the maximum 
power during the day. RN indicates a random number 
from a normal distribution with zero mean and standard 
deviation one. The factor k has been varied between 0 
and 0.4.  

 

 
Fig. 4. Comparison between perfect (k=0, up) and non 
perfect (k=0.4, bottom) prediction.  
 
A comparison between the results obtained by perfect 
(k=0) and inaccurate (k=0.4) prediction is presented in 

Fig. 4. It can be observed that, for perfect prediction, 
SOC values range usually from 0.5 to 0.9, while in case 
of inaccurate prediction they range in a wider interval, 
in some cases reaching saturation conditions (SOC=1). 
Consequently, fuel consumption values are quite regular 
in the former case, while some irregular peaks are 
present in case of inaccurate prediction. 
The results obtained by simulation analysis are 
summarized in next figures, in terms of fuel economy 
(Fig. 5) and percent degradation (Fig. 6) with respect to 
perfect prediction. In both cases, the best result obtained 
by parametric analysis, using a fixed value of final SOC, 
is also indicated (red line). It can be observed that, as 
expected, fuel economy decreases when forecast error 
increases. Moreover, the spread of the results also 
increases significantly with forecast error. In particular, 
if forecast error is lower the about 0.15, the results 
obtained by use of solar power forecast are better than 
the best result obtained by a fixed value of SOC, while 
for higher errors there is not an apparent benefit in terms 
of fuel economy by using weather forecast.  

 
Fig. 5. Fuel economy vs forecast error (red line is the 
best parametric result). 
 

 
Fig. 6. Fuel economy percent degradation vs forecast 
error (red line is the best parametric result). 
 
Anyway, it should be observed that the reference case 
considered (red line) represent the best result obtained 
by a parametric analysis, optimized for the months in 
study, and that the fuel economy values obtained by a 
non optimized fixed value of final SOC would be lower. 
 
3. SOLAR POWER FORECAST 
 
The estimation of net incoming energy in next parking 
phase involves the estimation of both solar power and of 
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parking time. The estimation of the start of next parking 
phase could be accomplished by use of on-board 
navigator system, providing the expected end of the 
current driving cycle. Regard to the end of parking 
phase, this could be estimated starting from statistical 
data on the driver habits, also considering the influence 
of the day of the week. Alternatively, the driver could be 
asked to enter or confirm these data when starting a new 
driving cycle.  
In the following, the accuracy achievable in solar power 
forecast by using some on-line tools is analyzed. There 
are many websites that offer weather forecast, for 
different locations. Moreover, there are an increasing 
number of companies that offer forecasting for the 
energy sector, including solar power prediction, as for 
instance www.enfor.eu, claimed as “among the most 
accurate tools on the market for solar power forecasting 
today”. Anyway, this tool is not currently available 
on-line. For this study, it has been selected 
www.wunderground.com, a service available on-line 
that allow to obtain forecasts for 5 days for a generic 
location. The site does not show the expected solar 
power, but instead provides the expected cloud cover, in 
percent, at various hours of the day (1, 4, 7, 10, 13, 17, 
19, 23). This index can be correlated to solar power, 
according to some studies [4]. The forecast is based on 
interpolation from weather stations near to the given 
location. 
A software tool to extract cloud cover estimation for a 
given location has been developed and implemented in 
Matlab on a web server. In fig.4 an example of cloud 
cover forecast is shown, for the current day and for the 
three subsequent days. 
 

 
Fig. 7 - Cloud cover forecast for Fisciano, Italy 

 
In order to check the possibility to use such data for 
estimation, the global solar radiation on an horizontal 
plane in Fisciano has been measured by means of a 
pyranometer, in a period from March 21 to May 9, 2010. 
The data have been aggregated as hourly average. In 
parallel, cloud cover forecast data have been acquired 
on-line. For each day, the measured data Em have been 
compared with theoretical radiation Es, computed 

considering direct and diffused components in a sunny 
day, and the ratio f between them has been computed: 
 

 (1) 

 
The formulas to calculate solar radiation, in absence of 
clouds, can be found in several references [9, 10]. In the 
following, the relationships used in this paper are 
presented. The variables defining sun position 
(declination , hour angle , height , azimuth Φs) 
are computed by the following relationships, as a 
function of Latitude L and longitude φ:  

23.45 · cos
2 10

365
 

 
(2) 

180 360
24  (3) 

cos cos
sin sin  (4) 

 

Φ sin
cos sin

cos  
(5) 

where hour indicates local time, computed also 
considering local longitude. The mean instantaneous 
direct radiation on horizontal surface is about 
I0=1356 . Considering that p0 is the pressure at sea 
level, pz is the pressure of the place considered, it is 
possible to calculate the air mass at sea level (m0) and 
the air mass in the place considered (mz). 

1
sin  (6) 

 (7) 

The transmittance of direct radiation is τb: 
 

. .
 (8) 

· (9) 
 
The direct solar radiation can be computed as a function 
of the angle of incidence i: 
 

cos (10) 
To compute the solar radiation diffuse it is necessary to 
know the factor angle of diffuse radiation (Rd), the mean 
instantaneous direct radiation on horizontal surface (Id0) 
and the orientation of the horizontal surface respect the 
south ( ). 

cos (11) 
0.2710 0.2939  (12) 

sin (13) 
So the diffuse radiation is: 

  (14) 
 
Finally the global solar radiation can be computed: 

 (15) 
 
Next pictures show a comparison between measured 
and computed values, and the cloud cover data for the 
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same day (this value has been acquired at the end of the 
day). In the first case, with an average cloud cover of 
12% (Fig. 8), the daily measured radiation is about 94% 
of the theoretical one, while in the second case (Fig. 9) 
the measured radiation is significantly lower (about 
50%), consistently with a higher value of cloud cover 
(34.5 %).   

 
Fig. 8. Measured and computed solar radiation, and 
estimated cloud cover (May 1st, 2010). 
 

 
Fig. 9. Measured and computed solar radiation, and 
estimated cloud cover (March 23rd, 2010) 
 

 
Fig. 10. Reduction in daily solar energy vs cloud cover 
 
Anyway, the study of the whole data has shown that 
there is not a significant correlation between the hourly 

cloud cover and the difference between measured and 
theoretical data, with a correlation coefficient almost 
equal to zero. This poor correlation may depend on 
several factors, as the need to interpolate from different 
and possibly distant weather stations. 
Instead, better results can be found by aggregating the 
data on a daily base. In Fig. 10, the ratio f (1) is plotted 
versus the daily mean cloud cover, while the red line 
represents the first-order regression curve. In Fig. 11, 
the error between the measured value of f and the value 
estimated by the regression line is plotted, versus mean 
daily cloud cover. 

 
Fig. 11. Distribution of forecast error on daily base 
 
By analyzing the data corresponding to 31 days, and 
considering only days with at least 10 hourly measured 
data per day, it emerges that, when could cover is less 
than 30%, the relative error between the measured value 
and the value estimated by regression line is lower that 
20%, while with higher values of cloud cover (30-60%) 
the uncertainty is larger, usually within 40%, apart some 
singular cases. It can be observed that with cloud cover 
between 40% and 50% there are roughly two clusters of 
data: one under the red line, corresponding to days with 
a reduced radiation, and one up the red line, 
corresponding to days with little reduction in radiation 
with respect to sunny day. At higher cloud cover 
(50-60%) the trend appears more regular. It could be 
considered that, when cloud cover is limited, the 
probability that clouds could obstruct sun rays is lower, 
and the data are more scattered, while the randomness is 
lower at low and high cloud cover values. 
Anyway, these conclusions should be confirmed by the 
analysis of a longer series of data, spanning over 
different periods of the year and, of course, extended to 
different locations. 
However, it should be remarked that the factor k used in 
equation (1) does not coincide with the relative error 
plotted in Fig. 11, although they are of course correlated. 
 
4.  CONCLUSIONS 
 
In order to maximize the benefits obtainable with 
Hybrid Solar Vehicles, more advanced look ahead 
capabilities would be required. In particular, the 
optimum compromise between two potentially 
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conflicting aspects should be realized: i) to leave as 
much as possible room in the battery for solar recharge 
and ii) operate in a favorable battery SOC range in 
terms of energy losses and life cycle. The future 
recourse to V2G technology would reduce but not 
remove the need to estimate the net incoming energy. 
Simulation results at different months and locations 
have shown that the estimation of the incoming solar 
energy in next parking phase produces a more efficient 
energy management, with reduction in fuel consumption, 
particularly at higher solar radiation. It has also been 
analyzed how these benefits deteriorate in presence of 
forecast inaccuracy.  
It has also been studied how measured solar power is 
correlated to cloud cover, using an a software tool 
available on-line. The results show that there is a 
significant scatter between the measured data and the 
data estimated by a regression line as a function of mean 
cloud cover, particularly when this index ranges from 30 
and 50%. Anyway, the simulations performed have 
shown that the adoption of solar energy prediction can 
give interesting benefits on fuel economy even in 
presence of forecast errors within 10-15%.  
Future developments include the study of other 
specialized tools for solar power prediction recently 
available on the market, in order to assess their accuracy. 
Moreover, the study, performed on a Lead-Acid battery, 
should be extended to other type of batteries, as Lithium 
Ion, also considering more articulate scenario’s, 
including random variations in driving cycle profile, 
length and parking time. 
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