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Abstract — ON THE USE OF GENETIC ALGORITHM TO OPTIMIZE THE ON-BOARD 
ENERGY MANAGEMENT OF A HYBRID SOLAR VEHICLE —  This paper deals with the 
development of a prototype of Hybrid Solar Vehicle (HSV) with series structure. This activity has 
been also conducted in the framework of the EU funded Leonardo project “Energy Conversion 
Systems and Their Environmental Impact”, a project with research and educational objectives.  A 
study on supervisory control for hybrid solar vehicles and some preliminary tests performed on the 
road are presented. Previous results obtained by a model for HSV optimal design have confirmed the 
relevant benefits of such vehicles with respect to conventional cars in case of intermittent use in 
urban driving (city-car), and that economical feasibility could be achieved in a near future. Due to 
the series-powertrain adopted for the HSV prototype, an intermittent use of the ICE powering the 
electric generator is possible, thus avoiding part-load low-efficient engine operations. The best ICE 
power trajectory is determined via genetic algorithm optimization accounting for fuel mileage as well 
as battery state of charge, also considering solar contribution during parking mode. The experimental 
set up used for data logging, real-time monitoring and control of the prototype is also presented, and 
the results obtained with different road tests discussed. 

 
INTRODUCTION 

Sustainable Mobility issues are gaining increasing 
attention both among specialists and in public opinion, 
due to the major impact of automotive systems on 
carbon dioxide production, climate changes and fossil 
fuel depletion. Recently, increasing efforts are being 
spent towards the application of solar energy to electric 
and hybrid cars. While solar vehicles do not represent a 
practical alternative to cars for normal use, the concept 
of a hybrid electric car assisted by solar panels appears 
more realistic [1]. 

In fact, thanks to a relevant research effort, in the last 
decade Hybrid Electric Vehicles (HEV) have evolved to 
industrial maturity, and represent now a realistic solution 
to important issues, such as the reduction of gaseous 
pollution in urban drive as well as the need for a 
substantial increase of energy conversion efficiencies. 
On the other hand, the use of solar energy on cars has 
been considered with a certain skepticism by most 
users, including automotive engineers. This may be due 
to the simple observation that the net power achievable 
in a car with current photovoltaic panels is about two 
order of magnitude less than maximum power of most of 
today cars. But a more careful analysis of the energy 
involved demonstrate that this perception may be 
misleading. In fact, there is a large number of drivers 
utilizing daily their car for short trips and with limited 

power demand [2]. In those conditions, the solar energy 
collected by solar panels on the car along a day may 
represent a significant fraction of the energy required for 
traction [3].  

In spite of their potential interest, solar hybrid cars have 
received relatively little attention in literature. Some 
prototypes have been developed or are under current 
development [4]. Although these works demonstrate the 
general feasibility of such an idea, detailed presentation 
of results and performance, along with a systematic 
approach to solar hybrid vehicle design, seem still 
missing in literature. 

Therefore, appropriate methodologies are required to 
address both the rapid changes in the technological 
scenario and increasing availability of innovative, more 
efficient components and solutions. A specific difficulty in 
developing a Hybrid Solar Vehicle relates to the many 
mutual interactions between energy flows, powertrain 
balance of plant and sizing, vehicle dimension, 
performance, weight and costs, whose connections are 
much more critical than in either conventional or hybrid 
electric vehicles. Moreover, the control strategies for 
HSV cannot be simply derived from the solutions 
developed for HEV. In fact, the presence of solar panels 
requires to extend the SOC management strategies also 
to parking phases, while the study of suitable control 
techniques is needed in order to maximize the net power 
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from solar panels [5]. Finally, many HSV prototypes tend 
to adopt a series structure, while most of today HEV 
adopt a parallel or series/parallel approach. Series 
structure appears more suitable for plug-in hybrid 
applications [6], and is compatible with the use of in-
wheel motors with built-in traction control and anti-skid 
[7]. Moreover, the series configuration represents a 
natural bridge towards the introduction of fuel cell hybrid 
vehicles.  

This paper deals with modeling, on-board energy 
management and performance evaluation for a 
prototype of Hybrid Solar Vehicle with series structure. 
This activity has been started in the framework of the UE 
funded Leonardo project “Energy Conversion Systems 
and Their Environmental Impact” [8], a project with 
research and educational objectives.  

1 THE HSV PROTOTYPE 
Table I lists the main features and specifications of the 
HSV prototype (see Figure 1), now under-development 
at DIMEC-UNISA lab facilities. 

Table 1: Actual HSV prototype specifications. 

Vehicle  Piaggio Porter 
Length 3.370 m 
Width 1.395 m 
Height 1.870 m 
Drive ratio 1:4.875 
Electric Motor BRUSA MV 200 – 84 

V 
Continuous Power 9 KW 
Peak Power 15 KW 
Batteries 16 6V Modules Pb-

Gel 
Mass 520 Kg 
Capacity 180 Ah 
Photovoltaic Panels Polycrystalline 
Surface APV 1.44 m2 
Weight 60 kg 
Efficiency (including 
converter) 

0.1 

Electric Generator  Yanmar S 6000  
Power COP/LTP 5.67/6.92 kVA 
Weight 120 kg 
Overall weight (w driver)  
MHSV 1950 kg 

 
 Vehicle lay-out is organized according to a series hybrid 
architecture, as shown on Figure 2. With this approach, 
the photovoltaic panels PV (placed on vehicle roof as 
shown on Figure 1) assist the Electric Generator EG, 
powered by an Internal Combustion Engine (ICE), in 
recharging the Battery pack (B) in both parking mode 
and driving conditions, through the Electric Node (EN). 
The Electric Motor (EM) can either provide the 

mechanical power for the propulsion or restore part of 
the braking power during regenerative braking. In this 
structure, the thermal engine can work mostly at 
constant power, corresponding to its optimal efficiency, 
while the electric motor EM is designed to assure the 
attainment of the vehicle peak power. 

 

Figure 1: The Hybrid Solar Vehicle Prototype. 

 

Figure 2: Scheme of the series hybrid solar vehicle. 

2 HSV MODELING AND EXPERIMENTAL 
CHARACTERIZATION 

HSV simulation, whose results are presented in Section 
4, was performed by means of a longitudinal vehicle 
model developed under the following hypotheses: i) drag 
(Cx) and rolling (Cr) coefficients are assumed equal to 
0.4 and 0.02, respectively; ii) the drag force is 
considered acting on vehicle centre of gravity; iii) overall 
transmission efficiency ηtr is set to 0.9; iv) rotational 
inertia is accounted for increasing vehicle weight by 
10%, therefore effective mass Meff equals 1.1 MHSV. The 
resulting longitudinal model relates requested power at 
wheels to the road load, as follows: 

( ) ( )[ ]

v
dt
dvM

vACCvgMP

eff

xrHSVw

+

+++⋅⋅⋅= 35.0sincos ραα
 (1) 

where α and v are the road grade and vehicle speed, 
respectively. For non negative Pw values, the 
mechanical power requested to the EM is: 
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PEM can also be expressed as function of power 
contributions coming from electric generator, battery and 
PV array, as follows: 

( ) 0/ ≥++⋅= wPVBDCACEGEMEM PifPPPP ηη  (3) 

where Px is the power supplied by the x component (i.e. 
electric generator, battery and photovoltaic panels), ηEM 
is the EM efficiency and ηAC/DC is the AC/DC converter 
efficiency, here set to 0.92.  

On the other hand, when Pw<0, the regenerative braking 
mode is active, resulting in the following expression for 
the electrical energy delivered by the EM: 

0<⋅⋅= wEMtrwEM PifPP ηη  (4) 

During regenerative braking, battery can be charged by 
EG and PV also, thus the following equation holds for 
negative Pw values: 

0/ <−⋅−= wPVDCACEGEMB PifPPPP η  (5) 

2.1 Electric generator 
The electric generator, is composed of a Diesel engine, 
one cylinder, 406 cm3, coupled with a 3 phase 
synchronous induction machine. Experiments were 
carried out to map the efficiency of the electric generator 
in a wide operating region, accounting for the whole path 
from fuel to electrical power. The experimental set-up 
was arranged with a 3-phase pure resistive, balanced 
electrical load. The measurements were accomplished 
at constant engine speed (3000 rpm), corresponding to 
a 50 Hz electric signal, with regularly spaced variation of 
electrical load by steps of 600 W, up to 5400 W. Figure 3 
shows the experimental EG efficiency vs. the output 
power of the electrical generator (EG). The efficiency 
was detected by processing the measurements of fuel 
consumption and output voltage and current, as follows: 

ifif

EG
EG Hm

IV
Hm

P
&&

⋅
==η  (6) 

In Figure 3 the efficiency predicted by a black box model 
identified vs. the experimental data is also plotted. The 
model expresses the overall efficiency of the electric 
generator as function of the output electrical power by a 
4th order polynomial regression. 
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Figure 3: Comparison between experimental and predicted electric 
generator efficiency. 

2.2 PV array 
Regarding the PV energy contribution to vehicle traction, 
it was computed on the basis of real energy 
measurements collected on a stationary PV plant 
located within UNISA area. The measured energy 
distribution results in the following daily average 
evaluated on a year basis: 

⎥
⎦

⎤
⎢
⎣

⎡
=

daykWp
kWhE daysun 1.3,  (7) 

Considering the PV roof efficiency of 10%, a nominal 
power of 1kW can be obtained with a 1/0.1=10 m2 array. 
Therefore, daily average energy yielded by the 1.44 m2 
PV roof (see Table 1) can be estimated as follows: 

[ ]dayWh
A

EE PV
daysunPV /450

10
44.11.3

10, =⋅=⋅=  (8) 

2.3 Battery pack 
The battery pack model estimates battery state of 
charge (SOC), current and thermal state as function of 
the actual electrical power (i.e. positive in discharge and 
negative in charge). The actual current is computed 
starting from the electrical power, by applying the 
Kirchoff’s law to the equivalent circuit shown on Figure 
4. The internal resistance Rin was modeled, following the 
approach proposed by [9], as a nonlinear function of 
battery temperature and state of charge. Figure 5 
focuses on the effect of SOC, showing high charge and 
discharge resistance at high and low SOC, respectively. 

 



Les Rencontres Scientifiques de l'IFP - Advances in Hybrid Powertrains  - 25-26 November 2008 - Proceedings 
 

 
Rin

__
E0

Vr

Vbatt

E0= battery open circuit voltage

Idis= discharging current

Vr= internal voltage losses

Rin

__
E0

Vr

Vbatt

Rin= battery internal resistance

Vbatt= effective voltage

Ichg= charging current

Idis Ichg

a) b)

 

Figure 4: Equivalent circuit of the battery pack [a) discharge; b) 
charge]. 

The battery model accuracy was checked by comparing 
simulated data with experiments conducted both in case 
of battery discharging and charging (see Figure 6). The 
agreement between experiments and model outputs 
confirms the validity of extending the model proposed by 
[9] to the battery pack the HSV prototype is equipped 
with. It is worth mentioning that the data shown in Figure 
6 refer to initial SOC values of 1 and 0.6 for battery 
discharging and charging, respectively. 
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Figure 5: Variation of battery internal resistance in charging and 
discharging as function of SOC [9]. 

0 20 40 60 80 100
5.8

6

6.2

6.4

Battery voltage [V] in discharge operation mode (a)

 

 
Experimental
Battery Model

 

0 20 40 60 80 100
6.2
6.4
6.6
6.8

7
7.2

Current [A]

Battery voltage [V] in charge operation mode (b)

 

 

Experimental
Battery Model

 

Figure 6: Comparison between model [9] and experimental data 
collected during battery discharging and charging. 

2.4 Electric motor 
The efficiency of the electric motor (EM) is simulated by 
a black box model identified vs. the technical data 
sheets provided by motor manufacturer. The model 
expresses the efficiency as function of the mechanical 
power provided for the propulsion via a 3rd order 
polynomial regression. Figure 7 shows both 
experimental and simulated efficiency vs. provided 
power. 
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Figure 7: Comparison between experimental and predicted electric 
motor efficiency vs. provided power. 

3 OPTIMAL ENERGY MANAGEMENT ON HSV 
VEHICLES 

Hybrid Solar Vehicles have of course many similarities 
with Hybrid Electric Vehicles, for which many studies on 
the optimal management and control of energy flows 
have been presented in last years [10–14]. 
Nevertheless, the presence of solar panels and the 
adoption of a series structure may require to study and 
develop specific solutions for optimal management and 
control of an HSV. 

In fact, in most electric hybrid vehicles a charge 
sustaining strategy is adopted: at the end of a driving 
path, the battery state of charge should remain 
unchanged. With a solar hybrid vehicle, a different 
strategy should be adopted as battery is charged during 
parking hours as well. In this case, a different goal can 
be pursued, namely restoring the initial state of charge 
within the end of the day rather than after a single 
driving path [15].  

Moreover, the series configuration suggests quite an 
efficient solution, namely to operate the engine in an 
intermittent way at constant operating conditions. Of 
course, the maximum gain in terms of fuel consumption 
occurs when the EG power corresponds to the most 
efficient value. In such case, the engine-generator 
system may be designed and optimized to maximize its 
efficiency, emissions and noise at design point, while in 
current automotive engines the maximum efficiency is 
usually sacrificed to the need of assuring stable 
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operation and good performance in the whole operating 
range.  

In order to develop a supervisory control to be 
implemented on the vehicle, a more accurate analysis of 
the optimal EG power distribution over an arbitrary 
driving cycle has to be performed. This task is discussed 
in the next sub-section. 

3.1 Optimization of electric generator 
scheduling by means of genetic algorithms 

The optimal EG power trajectory can be found by solving 
the following constrained optimization problem. 

( )∫ dtXm HSVfX ,min &  (9) 

subject to the constraints: 

00 =∆+−=∆ pfday SOCSOCSOCSOC  (10) 

minSOCSOC >  (11) 

maxSOCSOC <  (12) 

where HSVfm ,& is the HSV fuel consumption [kg], SOCf 
and SOC0 are the initial and final state of charge in the 
driving phase, respectively, and ∆SOCp is the SOC 
increase due to PV recharging during vehicle parking. 
The decision variables X include number of EG-on 
events NEG, along with corresponding starting time t0,EG,i, 
duration ∆t,EG,i and EG power level PEG,i, where i is the i-
th EG-on event. 

The first constraint (Eq. 10) allows to restore the initial 
state of charge within the end of the day, also 
considering parking phases. 

It is worth noting that the proposed energy management 
strategy is based on the knowledge of the vehicle route. 
Future activities will focus on the extension of the 
optimization outcomes to different driving scenarios as 
well as insolation conditions.  

The other constraints (i.e. Eqs. 11and 12) were defined 
accounting for internal resistance dependence on 
battery state of charge. Figure 5 shows that in the SOC 
range [0.55 0.9] both charging and discharging 
resistances are fairly constant while being close to their 
minimum values. Therefore in this analysis SOCmin and 
SOCmax were set to 0.55 and 0.9, respectively. 

The problem stated by Eqs. (9) through (12) involves 
both integer (e.g. NEG) and real variables, thus falling in 
the field of Mixed Integer Programming (MIP) problems. 
Among the several techniques that can be adopted to 

solve such problems, genetic algorithms (GA) is one of 
the most efficient [16] and has thus been selected for 
optimizing EG scheduling on the HSV prototype. 

The GA search was performed in Matlab environment by 
means of the GAtbx tool developed by [17].  GA 
optimization consists of an iterative procedure that can 
be schematized as follows: 

Phase 1: an initial population of Nind individuals (or 
solutions) representing the search domain (i.e. the 
decision variables domain) is generated randomly. 

Phase 2: An objective function F is evaluated for each 
individual. Then, assuming that a minimization task is 
being accomplished, all the individuals are ranked in 
ascending order on the basis of their Fk value. This way 
the so-called “fitness” is assigned to the k-th individual, 
whose value will range from a maximum to a minimum 
depending on its rank position.  

Phase 3: Fitness-based selection of best individuals. 
According to the evolutionary theory, the best individuals 
have the highest probability to join the next population. 
The “Roulette Wheel” and “Stochastic Universal 
Sampling” [17] are among the most widely adopted 
techniques to perform a random selection of the 
strongest individuals as function of their fitness. 
Particularly, the higher its fitness is, the more likely that 
individual will be selected. In this work, the latter method 
was applied. 

Phase 4: Generation of new individuals. Phase 3 usually 
yields a new set of individuals containing a higher 
number of “strong” (i.e. with high fitness) solutions, 
whereas some of the weakest ones disappear. This 
intermediate set undergoes a renewal process 
consisting of two different steps: crossover and 
mutation. The former step basically makes a certain 
number of individual pairs, selected randomly, to 
exchange part of their genotype with each other. The 
resulting genotypes will of course behave differently in 
the next population, thus yielding a couple of new 
individuals. After crossover, mutation takes place, once 
again based on random selection of some individuals.   

It is worth mentioning that an elitist approach is usually 
followed in Phase 4, in that some of the strongest 
individuals from the current population are ensured to be 
present in the next one. This way, even though a lower 
number of off-springs is introduced, the best solutions 
from the current population are preserved [17]. 

Phase 2 through Phase 4 are repeated as many times 
as the desired number of new generations is reached. 
The above description highlights the need for the 
decision maker to select several operating parameters 
(Nind, crossover and mutation probabilities, number of 
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generations) depending on problem complexity and 
computational time requirements. Further details about 
GA optimization techniques can be found in the 
abundant literature on the topic, which the reader is 
addressed to [16–19].   

For the current application, the following operating 
parameters were assumed: 

Table 2 – GA operating parameters.  

Nind 50 
Number of generations 300 
Crossover probability 0.7 
Mutation probability 0.06 

 
Regarding the binary representation to define the 
individual genotype, the number of bits per each 
decision variable was calculated according to the 
information provided in Table 3: 

Table 3 – Binary representation of the optimization problem.  

Decision 
variable 

Definition 
range Precision Number of 

bits 
NEG [1 4] 1 2 
tEG (min) [0 53] 0.055 10 
∆tEG (min) [0 53] 0.055 10 
PEG (kW) [0 5.5] 0.0055 10 
 

4 SCENARIO ANALYSIS 
In order to assess the HSV prototype performance not 
only at the current developmental stage, but also 
analyzing two further scenarios of improved vehicle 
configurations, a simulation analysis was performed. 
Such an analysis was accomplished by solving, in a 
backward manner, the longitudinal vehicle dynamics (i.e. 
Eq. 1) for a driving cycle composed of 4 ECE cycles, as 
the one shown on Figure 8. 

4.1 Results 
Table 4 summarizes the results obtained in the three 
analyzed scenarios. Particularly, it emerges that an 
acceptable fuel economy can be obtained even with 
current vehicle configuration (i.e. scenario 1). This is 
possible thanks to the high efficient use of the Diesel 
engine addressed by the GA based optimization 
described above. Particularly, Figure 9 shows that the 
Diesel engine is turned on once, after 15 minutes, 
delivering 5 kW to battery and/or EM for about 25 
minutes. This allowed to operate the EG itself at an 
overall efficiency as high as 0.28 (see Figure 3). The EG 
energy contribution caused battery to partially recover 
the state of charge reduction occurred in the first part of 
the driving cycle, resulting in a final SOC of 0.732, as 

shown on Figure 10. The lower value of SOC with 
respect to the initial one is in accordance with the 
constraint expressed by Eq. (10). 
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Figure 8: Module of ECE driving cycle. 

Regarding the other scenarios, it is worth mentioning 
here that the second scenario corresponds to an 
optimized vehicle configuration, in which a 0.18 efficient 
PV array (i.e. EPV = 810 Wh/day) replaces the actual one 
and battery capacity is lowered down to 75 Ah. The 
latter hypothesis takes into account the impact of vehicle 
hybridization, as the added electric generator allows to 
reduce both battery storable energy and nominal power. 
The lower battery capacity also causes the weight to 
decrease from 1950 kg to 1658 kg. Such a configuration 
results in a fuel economy improvement up to 22 km/liter, 
as indicated in Table 4. Figure 11 shows that in scenario 
2 the optimal EG scheduling addressed by the GA 
optimization consists of two EG-on events and lower 
average EG power with respect to scenario 1, which in 
turn results in a lower energy contribution by the EG. 
This is linked to the lower final SOC to be reached at the 
end of the driving phase (see Figure 10) as compared to 
scenario 1. The low final SOC (about 0.675) is due to 
the higher amount of solar energy and the lower battery 
capacity simulated in scenario 2. In conclusion, both 
weight reduction and PV efficiency increase contribute to 
achieve the fuel economy improvement. Particularly, the 
fuel saving is equivalent to 0.2 liter in the reference 
transient and is due by 56% to weight reduction and by 
44% to PV efficiency. 

Finally, the third scenario was considered to account for 
a further weight reduction (i.e. 20%), obtainable by 
improving vehicle materials [3]. The simulated fuel 
economy in this case gets close to 30 km/liter. As in 
scenario 2, the final SOC sets to 0.675, as shown on 
Figure 10. On the other hand, the energy contribution 
requested to the EG is further low as compared to 
scenario 2, due to the lower vehicle weight assumed in 
scenario 3. In order to maximize fuel economy, this time 
the GA optimization yielded a solution with 3 EG-on 
events, each one with shorted duration than scenario 2 
but similar average power, as shown on Figure 11.  
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Table 4 – HSV simulation results.  

Scenario 1 2 3 

ηPV 0.1 0.18 0.18 

Battery capacity (Ah) 180 75 75 

Mhsv 1950 1658 1326 

Fuel economy (km/liter) 15.18 21.70 29.15

0 10 20 30 40 50
-7

-3

1

5

9

13
15

Time [min]

Power [kW] - dotted line=Battery; continuous=EG

 

 

 

Figure 9: EG and battery power trajectories for scenario 1. 
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Figure 10: SOC trajectories for all simulated scenarios. 
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Figure 11: EG power trajectories for scenarios 2 and 3. 

5 MEASUREMENT SYSTEM ON THE VEHICLE 
The prototype has been equipped with a measurement 
system for real-time monitoring and data logging. Two 
experiments have been also carried out using different 
road tests. Schematically, the measure chain is reported 
in Fig.12. 

Moreover, the measurement system Ni C-Rio provides 
the acquisition vehicle torque while the solar prototype is 
running. A scheme of these measurements is shown in 
Fig. 13. 

 
 

Fig. 12 – Schematic representation of the acquisition system. 
 

 
 

Fig. 13 – Measurement Scheme carried out for the torque real-time 
monitoring. 
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5.1 Experimental results on the vehicle 
Some preliminary on-road tests were performed to 
measure the electric current in different vehicle 
conditions. 

Fig. 14 shows the brake and traction maneuvers 
imposed during the first test. As expected, when the 
driver brakes (e.g. at approximately 25 seconds in Fig. 
14 (a)) the electric machine switches to generator 
operation, thus charging the battery pack with current 
down to -50 Amps (see Fig. 14 (b)). Then, when the 
driver presses the accelerator pedal, the current sudden 
increases above 300 Amps for few seconds, before 
decaying towards steady-state operation (i.e. around 
100 Amps), as shown on Fig. 14 (b). 

The on-going activity is directed to the completion of the 
vehicle measurement system, in order to perform a 
detailed validation of vehicle dynamic models. Other 
data have been collected during acceleration-
deceleration maneuvers (Fig. 15) and for slope-up and 
slope-down maneuvers (Fig.16). 
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Fig. 14 – Experimental results collected in the first road test. 
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Fig. 15 – Experimental results collected in the second road test. 
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Fig. 16 – Experimental results collected in the third road test. 

6 CONCLUSIONS 
The paper reported on the actual developmental stage 
of a hybrid solar vehicle prototype. The experimental 
and numerical activities conducted to develop and 
validate a comprehensive HSV model were presented. 
The model accounts for vehicle longitudinal dynamics 
along with the accurate evaluation of energy conversion 
efficiency for each powertrain component.  

Genetic algorithm optimization was proposed to address 
some of the most challenging issues in the development 
of hybrid solar vehicles with series structure, namely the 
definition of the optimal electric generator scheduling. 

Actual vehicle performance and fuel economy were 
analyzed by simulating the HSV prototype on a driving 
route composed of 4 ECE cycles. The resulting fuel 
consumption was 15 km/liter. Further simulations 
showed that fuel economy can be increased up to 30 
km/liter both by substituting the actual PV array with 
more advanced solar technology and by appropriately 
resizing HSV components. 

On-going and future activities focus on numerical, 
experimental and prototype developmental tasks. 
Particularly, the procedure proposed to define the 
optimal EG scheduling via genetic algorithm optimization 
will be extended to optimal energy management of HSV 
in presence of varying insolation and lack of a-priori 
knowledge of driving route. In parallel, suited on the-
road test and measurements will be performed to 
validate both simulation results and control strategies 
effectiveness. Regarding prototype improvements, the 
installation of an automated sun-tracking roof to further 
enhance solar energy captation is under current study. 
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