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Abstract: In the paper, the performances of a rule-based (RB) control strategy for a series Hybrid Solar 

Vehicle (HSV) are assessed via comparison with a batch genetic algorithm-based (GA) optimization. The 

RB strategy relies on heuristic rules defined by optimizing ICE start&stop strategy as function of average 

traction power and current solar irradiation. The comparison with the reference GA benchmark confirms 

the suitability of the proposed RB strategy for HSV on-board energy management. Extensive simulations 

were performed to test the influence of driving cycle features, power-prediction time-horizon and solar 

irradiation on HSV fuel economy. Such simulation analysis, beyond providing useful indications about 

correct implementation of the RB strategy, also demonstrates the potentialities offered by HSV 

powertrains in both urban and highway driving conditions. 

Keywords: Engine Modeling, Engine Control, Optimization, Hybrid Vehicles, Solar Energy. 

 

1. INTRODUCTION 

In the last years, there is an increasing awareness about the 

need to achieve a more sustainable mobility, allowing to meet 

actual mobility demand without compromising development 

expectations of future generations (Kyoto protocol, 1997). 

The most pressing arguments towards new solutions for 

personal mobility mainly relate to: fossil fuels depletion; 

CO2-related greenhouse effects, with dangerous and maybe 

dramatic effects on global warming and climatic changes; 

increasing worldwide demand for personal mobility.  

One of the most realistic short term solutions to the reduction 

of gaseous pollution in urban drive, as well as to the energy 

saving requirements, is represented by Hybrid Electric 

Vehicles (HEV). These vehicles, which have already evolved 

to industrial maturity, allow achieving significant benefits in 

terms of fuel economy, but still using fossil fuels. On the 

other hand, in recent years increasing attention is being spent 

towards the application of solar energy to both electric and 

hybrid cars. But, while pure solar vehicles do not represent a 

practical alternative to cars for normal use, the concept of 

integrating hybrid electric car with solar panels appears more 

realistic. The reasons for studying and developing a Hybrid 

Solar Vehicle (HSV) can be therefore summarized as 

follows: 

• solar energy is renewable, free and largely diffused. 

Photovoltaic panels (PV) are subject to continuous 

technological advances in terms of cell efficiency, their 

diffusion is rapidly growing, while their cost, after a 

continuous decrease and an inversion of the trend occurred 

in 2004, appears quite stable in last years (Solarbuzz, 

2009); 

• solar cars, in spite of some spectacular outcomes in 

competitions such as the World Solar Challenge, do not 

represent a practical alternative to conventional cars, due 

to limitations on maximum power, range, dimensions and 

costs; 

• despite maximum power collected by solar panels is 

significantly lower than typical traction power demands, 

PV daily energy may represent a significant fraction of the 

energy required for traction (Arsie et al., 2008-I); 

• possibility of fruitfully combining HEV- and solar power-

related energetic benefits. 

In principle, Hybrid Solar Vehicles (HSV) could sum up the 

advantages of HEV and solar power, by the integration of 

Photovoltaic Panels with a Hybrid Electric Vehicle. But it 

would be simplistic to consider the development of an HSV 

as the simple addition of photovoltaic panels to an existing 

Hybrid Electric Vehicle. In fact, the development of HEVs, 

despite it was based on well-established technologies, 

showed how considerable research efforts were required for 

both optimizing the powertrain design and defining the most 

suitable control and energy-management strategies. 

Analogously, to maximize the benefits associated with the 

integration of photovoltaic with HEV technology, it is 

required performing optimal re-design of the whole vehicle-

powertrain system, on one hand, and, on the other, to define 

on-board energy management strategies that are well suited 

to maximize PV energy contribution, especially during 

parking phases (Arsie et al., 2007). 

Another difference between HEV and HSV regards with their 

structure. In fact, the prevailing architectures for HEV are 

parallel and parallel-series (Musardo et al., 2005; Sciarretta 

and Guzzella, 2007; Pisu and Rizzoni, 2007), while in case of 

HSV the series structure seems preferable (Letendre et al., 

2003). Despite some known disadvantages (higher efficiency 

losses due to more energy conversion stages), series structure 

is simpler and may offer significant advantages, which now 

are pushing relevant car manufacturers to adopt series 



 

 

     

 

configuration in new HEV vehicles (Bullis, 2007). Among 

them, the most attractive series features are: i) suitability for 

plug-in and vehicle to grid (V2G) applications (the generator 

can be used as co-generator when the vehicle is parked at 

home, Letendre et al., 2003); ii) the absence of mechanical 

links between generator and wheels enhances effective 

vibration insulation; iii) the opportunity of operating the 

internal combustion engine (ICE) at fixed conditions 

encourages the introduction of advanced techniques for noise 

reduction (i.e. active noise reduction); iv) Engines 

specifically optimized for steady operation can be used (i.e. 

D.I. stratified charge engines, micro gas turbine and so on); 

v) compatibility with the use of in-wheel motors with built-in 

traction control and anti-skid and, finally vi) potentiality of 

acting as a bridge towards the introduction of hybrid fuel cell 

powertrains (Konev et al., 2006; Bullis, 2007). 

In the next chapters, the main issues associated to proper 

management of energy flows on series HSV are addressed 

and discussed. Then, a new implementable rule-based 

approach, proposed by the authors for energy flow 

management, is presented. Simulation-based assessment of 

RB strategies is performed, by comparison with Genetic- 

Algorithm-based optimization of ICE start&stop scheduling. 

Finally, further simulation-based analyses are carried out to 

quantify the influence of driving cycle characteristics, power 

prediction strategies and solar irradiation level on HSV fuel 

consumption.  

2. CONTROL ISSUES FOR HYBRID SOLAR VEHICLES 

Although HSV share many common features with HEV, for 

which several remarkable studies on energy management and 

control have been presented in the last decade (Sciarretta and 

Guzzella, 2007; Pisu and Rizzoni, 2007; Arsie et al., 2005; 

Powell et al., 1998), there are some significant differences 

between the two vehicle typologies. Particularly, the presence 

of solar panels, along with the adoption of a series structure 

(see Figure 1), entail studying and developing specific 

solutions for HSV optimal management and control. 

As it is well known, in most HEV a charge sustaining 

strategy is adopted: at the end of a driving path, the battery 

state of charge should remain unchanged. With an HSV, a 

different strategy should be adopted as battery is charged 

during parking hours as well. Therefore, for HSV the 

objective is to restore the initial state of charge within the end 

of the day rather than after a single driving path (Arsie et al., 

2007). 

Moreover, the series configuration suggests quite an efficient 

solution, namely to operate the engine in an intermittent way 

at constant operating conditions. Of course, the maximum 

gain in terms of fuel consumption occurs when the EG power 

corresponds to the most efficient value. In such case, the 

ICE-EG system may be designed and optimized to maximize 

its efficiency, emissions and noise at design point, while in 

current automotive engines the maximum efficiency is 

usually sacrificed to the need of assuring stable operation and 

good performance in the whole operating range. In case of 

ICE intermittent operation, the effects exerted on fuel 

consumption and emissions by the occurrence of thermal 

transients in engine and catalyst should be considered (Arsie 

et al., 2008-II; Ohn et al., 2008). These effects are neglected 

in most studies on HEV (Guzzella and Amstutz, 1999) and 

on HSV (Preitl et al., 2007), where a steady-state approach is 

usually preferred to evaluate fuel consumption and emissions. 

In order to address the afore-mentioned control issues, in the 

last years the authors have performed several off-line 

analyses aimed at individuating optimal energy management 

strategies for series HSV (Arsie et al., 2007, 2008-II and 

Sorrentino et al., 2009). Specifically in this work, the 

research interests and aims turned towards the development 

of an RB control strategy to perform quasi-optimal on-board 

energy management for a series HSV powertrain. 

 

Fig. 1. Scheme of a series hybrid solar vehicle. Acronyms are 

intended as follows: EM (electric motor); PV (photovoltaic 

panels); EG (electric generator); EN (electric node); ICE 

(internal combustion engine); B (battery). 

3. RULE-BASED CONTROL STRATEGY FOR A SERIES 

HYBRID SOLAR VEHICLE 

The RB control architecture consists of two tasks, external 

and internal respectively: 

• external task: defines the desired final state of charge 

SOCf (see Figure 3), to be reached at the end of the driving 

cycle to enable full storage of solar energy capted during 

the following parking phase (i.e., Esun,p). 

• internal task: estimates the average power delivered by 

ICE-EG and SOC deviation (dSOC) from SOCf as 

function of average traction power  and Esun,p.  

Figure 2 provides a qualitative description of the start&stop 

strategy enabled by the above-described control tasks. For 

sake of simplicity, in Figure 2 it is assumed that initial state 

of charge SOC0 equals SOCf and does not vary with time. 

The battery is initially depleted until SOC becomes lower 

than SOClo = SOCf - dSOC. At this point ICE-EG is turned 

on at the assigned power level and switches off when the 

maximum threshold SOCup = SOCf + dSOC is reached. The 

procedure is repeated until the end of the driving cycle. It is 

worth mentioning here that effective final state of charge may 

differ from the desired SOCf due to the difficulty of precisely 

predicting the end of the driving phase. This consideration 

entails satisfying the following energetic constraint: 

1<∆+ pup SOCSOC  (1) 
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where ∆SOCp represents the state of charge increase 

subsequent to battery recharging performed by PV panels 

during parking phases. 

The described control strategy relies, on one hand, on the 

online estimation of current SOC level and, on the other, on 

predicting or properly estimating traction power demand over 

an assigned driving route. The following equations express 

the rules on which the external and internal task rely. 

( )
daysunf EfSOC ,=  (2) 

( )
daysuntrEG EPfP ,,=  (3) 

( )
daysuntr EPfdSOC ,,=  (4) 

where 
daysunE ,

 and 
trP  are, respectively, the daily solar 

energy (evaluated on a year base, see Table 3) and average 

traction power. The latter variable can be updated every th 

time horizon by means of the following  a-priori method: 
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Figure 3 gives a schematic description of the rule-based 

control strategy implementation. Eq. (2) provides the desired 

SOCf. Then, in the internal task the average power at which 

the ICE-EG works is evaluated by Eq. (3). The ON-OFF 

rules for the ICE-EG will depend on the SOC excursion (i.e. 

dSOC) addressed by Eq. (4). The logic described in Figure 3 

results in the control actions qualitatively shown on Figure 2. 

It is worth remarking here that the a-priori strategy expressed 

by Eqs. (2-5) becomes suitable for online application once 

coupled either to GPS information or model-based 

forecasting of traction power demand. Nevertheless, some 

preliminary analyses were conducted implementing an a-

posteriori version of the RB strategy (Rizzo et al., 2009), 

showing highly promising performance as compared to the a-

priori strategy herein discussed.   

Further details on the development of rule-based control rules 

(i.e. Eqs. 2-4) can be found in (Rizzo et al., 2009). 

 

Fig. 2. Schematic representation of the rule-based control 

strategy for quasi-optimal energy management of a series 

HSV powertrain. 

 

Fig. 3. Schematic description of external and internal task 

actions within the RB control strategy. 

4. REFERENCE BENCHMARK 

In order to assess the performance of the rule-based control 

strategy presented in section 3, a reference benchmark must 

be individuated.  

In most cases, Dynamic Programming (DP) is adopted for 

off-line optimal energy management in hybrid vehicles, with 

steady state hypothesis for thermal engine. Nevertheless, in 

this paper DP was not adopted, mainly because: i) ICE 

thermal transients are accounted for, thus the dimensionality 

of the DP problem would be increased and ii) the asymptotic 

behavior of engine temperature would represent a significant 

problem for backward computation involved in DP. 

Therefore, the genetic-algorithm-based optimization of ICE 

intermittent scheduling proposed by the authors in 

(Sorrentino et al., 2009) was selected. Such a choice is 

particularly suited for this specific problem, as it allows 

treating Mixed Integer Programming (MIP) problems 

(Sakawa et al., 2001).  

4.1  Optimization of Electric Generator Scheduling by Means 

of Genetic Algorithm 

In case of intermittent ICE scheduling, the optimal EG power 

trajectory can be found by solving the following constrained 

optimization problem: 

 ( )∫ dtXm HSVfX ,min &  (6) 

subject to the constraints: 

minSOCSOC ≥  (7) 

maxSOCSOC ≤  (8) 

where 
HSVfm ,

& is the HSV fuel consumption [kg/s]. 

The decision variables X include number of EG-on events 

NEG, along with corresponding starting time t0,EG,i and 

duration ∆tEG,i, where i is the i-th EG-on event. This way, 

since NEG is an integer variable, the optimization procedure 

expressed by Eqs. (6-8) falls in the field of MIP problems, 

thus confirming the suitability of GA search methods 

(Sakawa et al., 2001). Regarding EG power levels, in this 

work a modification was introduced with respect to the 

previous approach (Sorrentino et al., 2009). Particularly, 
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aiming at increasing the number of degrees of freedom in the 

GA optimization, it was assumed that four different PEG 

power level can be imposed for each EG-on phase. Therefore, 

the power-related decision variables are PEG,i,j, where j varies 

in the integers interval [1-4]. 

The constraints expressed by Eqs. (7-8) were defined 

accounting for internal resistance dependence on battery state 

of charge. For lead-acid batteries, in the SOC range [0.5 0.9] 

both charging and discharging resistances exhibit limited 

variability while being close to their minimum values (Burch 

et al., 1999). Therefore in this analysis SOCmin and SOCmax 

were set to 0.5 and 0.9, respectively. 

For the current application, the following operating 

parameters were assumed for the GA search procedure 

(Chipperfield et al., 2009): 

Table 1.  GA operating parameters. 

Population size 35 

Number of generations 250 

Crossover probability 0.8 

Mutation probability 0.003 

Elitism percentage [%] 3 

A binary representation of the decision variables was 

selected, as reported in Table 2. 

Table 2.  Binary representation of the optimization 

problem. 

Decision 

variable 

Definition 

range 

Precision Number of 

bits 

NEG [1 8] 1 3 

tEG (min) [0 78/ NEG] 0.073/ NEG 10 

∆tEG (min) [0 78/ NEG] 0.073/ NEG 10 

PEG (kW) [0 43] 0.040 10 

The GA optimization was applied to minimize the fuel 

consumption for a 1.3 hours long driving cycle composed of 

a series of ECE-EUDC modules. HSV fuel consumption was 

simulated by means of the backward longitudinal vehicle 

model presented in (Sorrentino et al., 2009). In the analysis 

the effect of thermal transients on ICE performance and HC 

emissions were also taken into account following the 

approach proposed in  (Arsie et al., 2008-II). Table 3 lists the 

specifications of the reference HSV. The simulated fuel 

economy yielded by the GA optimization algorithm on the 

ECE-EUDC cycle was as high as 22.49 km/l. Figure 4 

through Figure 6 show the EG power, engine temperature and 

SOC trajectory associated to the GA optimal solution. 

Regarding SOC simulations, it is worth pointing out that the 

HSV model (Sorrentino et al., 2009) also accounts for the 

dependence of battery internal resistance on SOC.  

5.  SIMULATION BASED ANALYSIS OF RB STRATEGY 

PERFORMANCE 

The comparison of simulated GA and RB performance 

indicates how the latter gets significantly close to the former, 

resulting in fuel economy decrease of about 0.1 % on the 

ECE-EUDC cycle. 

Table 3.  HSV specifications. 

Nominal ICE power [kW] 46 

Fuel gasoline 

Nominal EG power [kW] 43 

Nominal EM power [kW] 90 

Number of Lead-acid battery modules  27 

Battery capacity CB [kWh] 8 

PV horizontal surface [m
2
] 3 

PV efficiency  0.13 

Coefficient of drag (Cd) 0.33 

Frontal area [m
2
]  2.3 

Rolling resistance coefficient [/] 0.01 

Weight [kg] 1500 

Driving hours hcar [h] 1.3 

Average 
daysunE ,

 at 30° Latitude [kWh/m
2
] 4.31 

Daily irradiation hours hsun [h] 10 

 

Figure 4 through Figure 6 compare the EG, engine 

temperature and SOC trajectory, simulated by means of the 

RB strategy, with those referring to the reference GA 

benchmark. It is worth noting that, in order to account for the 

different SOC that will be reached at the end of the day, HSV 

equivalent fuel consumption was computed as follows: 

iEGICE

Bext
feqf

H

CSOC
mm

⋅

⋅∆
−=

−η
,

 (9) 

where EGICE −η  is the average ICE-EG efficiency over the 

entire driving cycle and extSOC∆  is the extra SOC increase at 

the end of the day, i.e., after the parking phase (Rizzo et al., 

2009). Regarding the prediction time-horizon adopted in the 

RB simulations, it was found minimizing fuel consumption 

over the entire ECE-EUDC cycle. In order to analyze the 

dependence of th value on driving cycle characteristics, the 

procedure was repeated on the other driving cycles listed in 

Table 4. Figure 7 shows the variation of th as function of 

average traction power. Interestingly, th exhibits a linear trend 

with respect to 
trP . The latter observation can be explained 

considering that higher 
trP  values are usually associated to 

constant-speed highway driving, where Ptr standard deviation 

is very small. In such conditions, limited variation in future 

power demands is expected, thus allowing to extend 

prediction time horizon, as it emerges from Figure 7. It is 

worth mentioning here that hcar was set to 1.3 h for all the 

driving cycles listed in Table 1. Therefore, the simulated 

driving routes consist of a sequence of corresponding 

standard cycles.  

Finally, Figure 8 illustrates the impact of solar irradiation on 

HSV fuel economies for all the analyzed driving cycles. The 

reference value (i.e. corresponding to 100 % in Figure 8) 

relates to the Esun,day value given in Table 3. As expected, 



 

 

     

 

increased irradiation level mainly improves urban-related fuel 

economies. 

 

Fig. 4. Simulated power trajectories. 

 

Fig. 5. Simulated engine temperature trajectories. 

 

Fig. 6. Simulated battery SOC trajectories. 

Table 4. Selected driving cycles in the prediction time 

horizon analysis. 

Driving cycle 
trP  [kW] RB fuel 

economy [km/l] 

CYC_1015_6PRIUS 1.51 26.32 

FUDS 2.33 23.25 

ECE-EUDC 2.99 22.45 

FHDS 8.31 20.97 

US06HWY 16.60 13.54 

 

Fig. 7. Variation of prediction time horizon (th) as function of 

average traction power 
trP . 

 

Fig. 8. Impact of daily PV energy contribution on HSV fuel 

economies. 100% corresponds with the average Esun, day value 

given in Table 3.  

6. CONCLUSIONS 

In the paper, a simulation based analysis was carried out to 

assess the performance of a rule-based control strategy for 

real time energy management of HSV powertrains. An 

optimal ICE scheduling addressed by genetic-algorithm-

based batch optimization was assumed as reference 

benchmark. The comparison between the two fuel economies 

demonstrated the suitability of the proposed RB 

methodology.  

Further simulations were conducted to investigate the 

dependence of power prediction time horizon, on which the 
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RB strategy is based, from driving cycle features. An 

interesting linear trend of such time horizon with respect to 

average power demand at wheels emerged. Some simulations 

also were conducted to assess the impact of irradiation level 

variation on HSV fuel economies, highlighting the higher 

contribution guaranteed by solar energy in urban driving. 

Future work will focus on coupling the RB control 

architecture with suited power predictors, either based on 

GPS derived information or model-based forecasting. 

Moreover, the performance achievable with a-posteriori 

traction power estimation will be analyzed, thus enhancing 

real time implementation of the proposed RB control 

strategy. 
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