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Abstract— Hybrid electric vehicles (HEVs) gain more and 
more attention, as they represent a more environmental 
friendly alternative to conventional vehicles. If combined with 
photovoltaic panels, they can lead to further reduction of 
emissions. The paper focuses on a solution for minimizing the 
fuel consumption in a series hybrid solar vehicle (HSV). After 
briefly introducing the model, first a global optimum in fuel 
consumption is presented using dynamic programming, as a 
reference value. As a real-time control strategy, Model 
Predictive Control (MPC) is considered. A fuel consumption 
equivalent quantity is defined which is used for calculating the 
fuel needed to bring the battery state of charge to a starting 
value (set in this case for 0.7 in relative units). For different 
values of the MPC tuning parameters simulations are 
performed using the urban section of the New European Drive 
Cycle. Conclusions based on the simulations are presented. 

I. INTRODUCTION 
 

YBRID electric vehicles (HEVs) are combining 
multiple main energy sources, usually consisting in a 
conventional fuel tank and a battery. By adding a 

photovoltaic panel, a Hybrid Solar Vehicle (HSV) is 
obtained. Different types of HSV architectures can be used, 
depending on the actual requirements [1],[2]. These are 
differentiated through their drivetrain structures, the basic 
structures are: series, parallel, series/parallel and complex 
hybrids. For hybrid solar vehicles, the series structure is 
receiving increasing attention due to its capability to interact 
with grid within the plug-in hybrid concept [3]. In the paper 
the series structure is used, proving to be optimal for urban 
drive, this structure has been recently adopted for modelling 
purposes on HSVs [4] and for some prototypes [5]. 

The paper is structured as follows: first the main 
components are briefly presented, based on [6], resulting in 
a linearized mathematical model of the HSV. Section III 
presents Dynamic Programming (DP) results for fuel 
consumption minimization. In section IV a fuel equivalent is 
defined, based on the fuel consumption evolution during the 
drive cycle. This measure allows the calculation of an 
equivalent of fuel amount needed (or in excess) for 

establishing a battery state of charge level of 0.7 (in relative 
units). Section V presents Model Predictive Control (MPC) 
as a practice oriented solution. Simulations were performed 
for different controller parameters. The last section draws 
conclusions based on the simulation results. 
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II. MATHEMATICAL MODEL OF THE HSV 

A. HSV architecture aspects 
The general architecture of a series HSV is depicted in 

figure 1 (main components and power distribution). 
 

 
Fig. 1. Series hybrid vehicle basic architecture 

 
A fuel minimization oriented modelling assumes the 

following main components: the electric motor (EM) which 
drives the wheels or works as a generator during 
regenerative braking; the electric generator (EG) which 
delivers electrical energy for the EM; the photovoltaic (PV) 
panel and a battery. The EG is in rigid connection with the 
internal combustion engine (ICE). The vehicle management 
unit (VMU) controls and coordinates the components. The 
power balance is presented in more detail in section III. 

B. Brief component modelling 
The EMs considered for electric vehicles are either DC 

motors or brushless DC motors [7],[8]. In this paper a 
brushless DC motor (BLDC) is considered which can be 
used both as motor and as generator. The BLDC’s operating 
range is divided into four quadrants: forward motoring, 
forward breaking, reverse motoring and reverse braking. A 
qualitative modelling is used, namely the steady-state speed-
torque curves );( parameterUfM −= ω , described by the 
following relation: 
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where M is the torque, ω is the angular velocity, U is 
voltage, Rm is resistance, Kt, Ke, are the electromechanical 
and the electromagnetic constants of the machine. 

The power balance between the electrical (Pel) and 
mechanical powers (Pm) is also taken into account: 

Pel=Pm/ηEM           (2) 

More details regarding the model and numerical data can 
be found in [6]. 

The battery model used in the paper is a relatively 
complex model, considering the battery a real voltage 
generator [9], which considers the change in open circuit 
voltage when battery state of charge (SOC) changes. The 
literature contains also a large variety of other models, from 
simple ones to complex models [10],[11]. The efficiency of 
the battery is considered in a non-linear manner (see 
equation (3) and symbolised with η for simplicity in figure 
2, which depicts the overall structure of the battery model). 
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Fig. 2.  Battery simulation structure 

 
The state of charge (SOC) is defined in relative units, 

namely between 0 (empty) and 1 (full charge). A condition 
is imposed so that the SOC stays between the values of (0.6 
… 0.8), and the starting value is 0.7. More details regarding 
the battery model can be found in [6]. Here also the 
hypothesis is accepted according to which the final value of 
the SOC be as close as possible to the starting value of 0.7. 

 The choice of the PV panel does not depend on the other 
components. It is modelled with the following equation: 
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Here Uopt is the output voltage value at the maximum 
power point, is the maximum possible output voltage, 
K and are parameters, λ is the irradiation value, T is the 
cell temperature. Although photovoltaic panels should be 
controlled separately by MPPT (Maximum Power Point 
Tracking) methods in order to maximize the net energy [12], 
PV power itself cannot be considered as a control variable. 

maxU

UT

The electric generator (EG) and internal combustion engine 
(ICE) should be fitted to the electric motor and to each other 
(in the maximum efficiency region). This way the EG can be 
described by a single characteristic curve, between input 
mechanical and output electrical power, see figure 3.  

The description of ICE is possible in a similar way 
considering the maximum efficiency working line. The fuel 
map of the proper ICE (which can satisfy the EG input 
power needs) is depicted in figure 4. 

          
Fig. 3.  Characteristic curve of electric generator  
 

 
 Fig.4. Characteristic fuel map of the ICE 
 

C. Plant model and drive cycle used 

The model of the plant resulted in a non-linear model [6], 
where the elements were modelled each as presented above, 
and connected according to figure 1. Also first order lag 
elements were introduced for catching the dynamics of the 
ICE and EM, with adequate time constants. A Simulink 
model was built based on this, and for controller design a 
linearization was performed around a working point, using 
the Matlab function linmod2. For simulation, the non-linear 
model was used for the plant. The inputs, outputs and states 
of the mathematical model are as follows: 

 Inputs: -  u1: ICE power, 
         -  u2: Battery nominal power; 
 State variables: -  x1: state of dynamics of ICE, 

- x2: SOC, 
- x3: state of dynamics of EM; 

 Measured disturbance input: - dm: PV panel power. 
 Outputs: -  o1: Drive power, 

- o2: SOC, 
- o3: Fuel rate; 
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The linearized discrete time state-space model of the plant, 
using a sampling time of Ts=0.001 sec, is described with (5). 
The numerical data is taken from the literature [9], and 
presented in more detail in [6] and [13].  

 
The system is both controllable and observable. 

Constraints act upon the system inputs and outputs, 
enumerated in equations (6). 
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The PV power is treated as a measured disturbance, 
depending on the actual irradiation value.  

In order to test the system and offer comparable results, in 
the paper the urban part of the New European Drive Cycle 
(NEDC) is considered [10], that means the first 800 seconds. 
The time-velocity characteristics of the urban part of NEDC 
are depicted in figure 5. 
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Fig. 5. Urban part of the New European Drive Cycle  

III. DYNAMIC PROGRAMMING SOLUTION TO FUEL 
CONSUMPTION MINIMIZATION 

 
Dynamic programming (DP) is suitable for obtaining the 

global optimum of a problem, resulting in an optimal input 
sequence applied to the plant input. Unfortunately, DP 
cannot be applied in real-time, since it requires a-priori 
knowledge of all reference signals and disturbances acting 
on the entire duration of the drive. Still DP is very useful 
since it delivers a reference solution, the global optimum, 
and all other control solutions can be compared to it. 

The aim of the paper is fuel consumption minimization 
over a certain time horizon, in this case for the urban part of 
the NEDC, realized through a proper balancing of the 
energy sources. The electric motor’s power requirements 
can be satisfied by the electric generator, battery and PV 

panel [14].  
The power balance of the system is described by the 

following equation: 

PVbnege PPPP ++=    (7) 

In this case electric generator power and  battery 

nominal power are the control variables. electric motor 
power can be calculated from  drive power need, 
considering the characteristics of the EM.  and  are 

influenced by the controller, being the control signals of the 
system. The power balance of the system is also depicted in 
figure 1. The nominal values for the considered powers are: 
P

egP bnP

eP

dP

egP bnP

e,n=40 kW, PPV,n=600 W, PICE,n=67 kW, Peg,n=55 kW. 
The calculations are performed considering the possible 

SOC values at every time step, which can be achieved 
according to the constraint, , and the 
minimal and maximal allowed SOC values (0.6 and 0.8, 
respectively) [15]. A more detailed description of DP used 
for HSV can be found in [13]. 

)()0( endSOCSOC ≡

After calculating the optimal input sequence Pbn and 
deriving Peg out of it based on (7), the optimal solution in 
fuel consumption minimization gives the following 
reference values: 

• Total fuel consumed: 200.2299g 
• Final SOC: 0.7 

IV. FUEL CONSUMPTION EQUIVALENT DEFINITION 
 
For fuel consumption minimization different control 
strategies can be applied, as alternatives to DP, and their 
performances compared to each other. If after a drive cycle 
the SOC differs from 0.7, a fuel equivalent can be defined to 
characterize in terms of fuel needed (or excess) the 
“distance” from this SOC value. In the paper the following 
concept was applied: during the drive cycle the time mean 
integral of the fuel amount consumed only for charging the 
battery is calculated.  

Starting from equation (7) and figure 1, if Pbn<0 the 
battery is charged. Suppose the PV panel delivers constant 
energy, having the same irradiation coefficient all over the 
drive cycle. In case of battery charging, the sum Pbn+PPV 
defines the power needed from the ICE to charge the battery 

(naturally through Peg). If , the 0<+ PVbn PP
eg

PVbn

P
PP +

 

will represent the ratio of the power that is divided between 
the battery and the EM. This ratio is an approximation, since 
the static characteristics of the EG are non-linear.  

Define the equivalent fuel rate used for charging the 
battery as (8) 

f
eg

PVbn
fb m

P
PP

m &&
+

=         (8) 

where  is the total fuel rate, and the equivalent fuel 

rate for battery charge. The SOC is modified with this value, 
fm& fbm&
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namely: 

dSOC
dm
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dSOC
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dSOC
m fb
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fb ==
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The time mean value of (9) is calculated during the 
simulation, which represents the average amount of 
consumed fuel per SOC unit: 

∫=
T

dt
dSOC

dm
TdSOC

dm

0

1       (10) 

The fuel amount needed for charging the battery (or fuel 
excess, respectively) is finally defined by: 

)7.0( finalneededfb SOC
dSOC

dmm −=−     (11) 

Where SOCfinal represents the SOC level at the end of the 
simulation. Using this fuel equivalent, some performance 
indices of a control solution can be evaluated. 

V. MODEL PREDICTIVE CONTROL FOR FUEL CONSUMPTION 
MINIMIZATION 

 
An attractive solution for optimal control is Model 

Predictive Control (MPC), which can handle constraints of 
the inputs, outputs and states as well. MPC was proposed for 
hybrid vehicles in the literature by different authors, see for 
example [16]. MPC had spread significantly during the past 
years in industry as well, due to the computational capacity 
of nowadays machines [17],[18],[19]. 

A quadratic cost function is defined for fuel consumption 
minimization, in the form of: 
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Where )(ˆ kiky + are the predictions at time k of the 

output y, )( kikr + is the reference trajectory vector, 

)(ˆ kiku +∆ are the changes of the future input vector. 

The choice of the weighting factors, prediction and 
control horizon is crucial, the aim is to get a balance 
between good tracking and acceptable control signals [20]. 
As a starting point it is advisable to normalize all signals in 
the cost function, and then start systematically tuning each 
element of the diagonal matrices Q and R so that a desired 
trade-off is achieved. 

In what follows, simulation results are presented 
concerning different tuning parameter values. The reference 
signals in all cases are: r1 – drive power demand calculated 
from the drive cycle, r2 = 0.7 SOC value, r3=0 for fuel rate. 

The Pd drive power demand is calculated from the time-
velocity characteristics from figure 5, based on the 
following basic dynamical relations of vehicle motion: 
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where ω is the angular velocity, Md - the torque required 
from the EM, v(t) - the velocity,  - the acceleration, m - 
the vehicle mass. Numerical data regarding these elements, 
and for the constants A

( )v t&

d, Cd, Cr, g, wr, ρ are done in [6]. 
The prediction horizon was N=10 and control horizon 

Nu=4 for all simulation cases. For getting conclusive results, 
the Q and R matrices fixed for three simulation examples. 
 

• The first experiment (figures 6 to 9): 

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−

−
−

4

4
2

100
010

R,
0.00100

01000
0010

Q     (14) 

0 100 200 300 400 500 600 700 800
-4

-3

-2

-1

0

1

2

3

4
x 104

T i m e       [ s e c ]

D
 r 

i v
 e

   
   

p 
o 

w
 e

 r 
   

  [
 W

 ]

D r i v e      p o w e r       r e f e r e n c e      t r a c k i n g

 

 

Output Pd
Reference Pd

 
Fig. 6. Drive power reference tracking 

0 100 200 300 400 500 600 700 800
0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

T i m e          [ s e c ]

S
 t 
a 
t e

   
   
o 
f  
   
  c

 h
 a
 r 
g 
e 
   
   
 [ 
r. 
u.
 ]

S t a t e        o f        c h a r g e

 
Fig. 7. State of Charge 
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Fig. 8. Fuel consumption 
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Fig.9. Control signals PICE and Pbn 
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Synthesising the simulation results, one gets: 
- The total fuel consumption is mf=136.4328g;  
- the final SOC is SOCfinal=0.6773;  
- the fuel needed for bringing the SOC to 0.7 following 

the drive tendency: mfb-needed=79.8137g; 
- mtotal=mf+mfb-needed=216.2465g. 

 

• The second experiment (figures 10 to 13): 
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Fig. 10. Drive power reference tracking 
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Fig. 11. State of Charge 
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Fig. 12. Fuel consumption 
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Fig.13. Control signals PICE and Pbn

Synthesising the simulation results, one gets: 
- The total fuel consumption is mf=112.2535g;  
- the final SOC is SOCfinal=0.6731;  
- the fuel needed for bringing the SOC to 0.7 following 

the drive tendency: mfb-needed= 150.8056g; 

- mtotal=mf+mfb-needed=263.0591g. 
 

• The third experiment (figures 14 to 17) 
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Fig. 14. Drive power reference tracking 
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Fig. 15. State of Charge 
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Fig. 16. Fuel consumption 
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Fig.17. Control signals PICE and Pbn

 
Synthesising the simulation results, one gets: 

- The total fuel consumption is mf=341.3378g;  
- the final SOC is SOCfinal=0.6946;  
- the fuel needed for bringing the SOC to 0.7 following 

the drive tendency: mfb-needed=77.7170g; 
- mtotal=mf+mfb-needed=419.0548g. 
 
A simulation was performed for HSV model without any 

controller at all, when the ICE delivers all the energy needed 
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for the EM. In this case the total fuel consumption was 
mf=274.7437g. 

Based on the simulation results it can be concluded that for 
all tuning parameters the total fuel consumed, including the 
fuel equivalent, gives a value larger than the global 
optimum. The smallest total fuel is in the case of the first 
simulation, namely mtotal=216.2465g. This value is smaller 
than the value without controller. Also in the second case 
the total fuel is smaller than this value: mtotal =263.0591g, 
which reflects also an acceptable result. 

In this case the tracking performances regarding Pd are 
good, the overshoots have values between the two other 
simulations. For the third simulation the tracking is best of 
all three, with an exception at the start. But the fuel 
consumption is extremely large, compared to the other 
cases, it is bigger than the value without controller. This 
case is not acceptable, it is a good counterexample.  

The final values of the SOC largely differ in the first two 
cases from the third one, reflecting the influence of the 
tuning weights.  

The control signals differ slightly in aspect in the first two 
cases from the third one. It can also be noticed a difference 
in the fuel consumption, in the first two cases there is a step-
wise evolution (meaning there is no fuel consumption at 
those moments), whereas in the third one there is an almost 
continuous and gradual increase, ICE functioning at full 
load. All these differences reflect the importance of proper 
balancing of the tuning parameters, which defines the 
switching between the energy sources. 

 

VI. CONCLUSIONS 
The paper presents two solutions for fuel consumption 
optimization of a series Hybrid Solar Vehicle (HSV), 
preceded by a brief modelling of the plant. 

The first control strategy is dynamic programming, 
resulting in a global optimum for fuel consumption. For this 
case the total fuel is calculated and compared with Model 
Predictive Control results, which is the second control 
strategy implemented. 

Simulations were performed for a reference drive cycle, 
namely for the urban part of the New European Drive Cycle. 
Three parameter configurations were chosen, for which 
reference tracking and fuel consumption minimization give 
promising results, reflecting the influence on the tuning 
weights upon the performance of the system. The test 
simulations presented in the paper were performed using the 
Matlab/Simulink environment. Future work will concentrate 
on mathematical model improvement and use of other 
control strategies. 
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